天津市南开区2025届高一上数学期末复习检测模拟试题含解析_第1页
天津市南开区2025届高一上数学期末复习检测模拟试题含解析_第2页
天津市南开区2025届高一上数学期末复习检测模拟试题含解析_第3页
天津市南开区2025届高一上数学期末复习检测模拟试题含解析_第4页
天津市南开区2025届高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市南开区2025届高一上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,若,,,则()A. B.C. D.2.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.3.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.14.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.5.已知函数,则函数()A. B.C. D.6.函数的零点所在的区域为()A. B.C. D.7.设,则的值为()A.0 B.1C.2 D.38.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)10.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点二、填空题:本大题共6小题,每小题5分,共30分。11.向量在边长为1的正方形网格中的位置如图所示,则__________12.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.13.若则______14.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元15.已知,,则的最小值是___________.16.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如下图所示.(1)求函数解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.18.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点.(1)求的值;(2)若第一象限角满足,求的值.19.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B120.为了做好新冠疫情防控工作,某学校要求全校各班级每天利用课间操时间对各班教室进行药熏消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量(单位:mg)随时间(单位:)的变化情况如图所示,在药物释放的过程中与成正比,药物释放完毕后,与的函数关系为(为常数),其图象经过,根据图中提供的信息,解决下面的问题.(1)求从药物释放开始,与的函数关系式;(2)据测定,当空气中每立方米的药物含量降低到mg以下时,才能保证对人身无害,若该校课间操时间为分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.21.已知一次函数是上的增函数,,且.(1)求的解析式;(2)若在上单调递增,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】首先判断,和的大小关系,然后根据函数的单调性,判断的大小关系.【详解】,,,,,,是上的减函数,.故选:A.2、B【解析】所以,所以。故选B。3、B【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.4、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象5、C【解析】根据分段函数的定义域先求出,再根据,根据定义域,结合,即可求出结果.【详解】由题意可知,,所以.故选:C.6、C【解析】根据函数解析式求得,根据函数的零点的判定定理求得函数的零点所在区间【详解】解:函数,定义域为,且为连续函数,,,,故函数的零点所在区间为,故选:【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题7、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.8、A【解析】由图观察出和后代入最高点,利用可得,进而得到解析式【详解】解:由图可知:,,,,代入点,得,,,,,,故选.【点睛】本题考查了由的部分图象确定其表达式,属基础题.9、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.10、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由题意可知故答案为312、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.13、【解析】14、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题15、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.16、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.18、(1)(2)【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解;(2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解.【小问1详解】角的终边经过点,所以.所以.【小问2详解】由条件可知为第一象限角.又为第一象限角,,所以为第二象限角,由得,由,得.19、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整20、(1);(2)可以,理由见解析.【解析】(1)将图象上给定点的坐标代入对应的函数解析式计算作答.(2)利用(1)的结论结合题意,列出不等式求解作答.【小问1详解】依题意,当时,设,因函数的图象经过点A,即,解得,又当时,,解得,而图象过点,则,因此,所以与的函数关系式是.【小问2详解】由(1)知,因药物释放完毕后有,,则当空气中每立方米的药物含量降低到mg以下,有,解得:,因此至少需要36分钟后才能保证对人身无害,而课间操时间为分钟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论