江西省新余市分宜中学2025届高一上数学期末复习检测试题含解析_第1页
江西省新余市分宜中学2025届高一上数学期末复习检测试题含解析_第2页
江西省新余市分宜中学2025届高一上数学期末复习检测试题含解析_第3页
江西省新余市分宜中学2025届高一上数学期末复习检测试题含解析_第4页
江西省新余市分宜中学2025届高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新余市分宜中学2025届高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.2.下列不等关系中正确的是()A. B.C. D.3.已知,则下列说法正确的是()A.有最大值0 B.有最小值为0C.有最大值为-4 D.有最小值为-44.已知命题:,,则是()A., B.,C., D.,5.已知集合,则()A.0或1 B.C. D.或6.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.7.设,,,则,,的大小关系为()A. B.C. D.8.已知函数,若,则的值为A. B.C.-1 D.19.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,将角的终边按顺时针方向旋转后经过点,则()A. B.C. D.10.函数的一个零点是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数和函数,若对任意都有使得,则实数a的取值范围为______12.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________13.已知函数若,则实数___________.14.函数fx=15.已知,则___________16.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.18.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围19.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.20.在△中,已知,直线经过点(Ⅰ)若直线:与线段交于点,且为△外心,求△的外接圆的方程;(Ⅱ)若直线方程为,且△的面积为,求点的坐标21.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D2、C【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答.【详解】对于A,,而函数在单调递增,显然,则,A不正确;对于B,因为,所以,故,B不正确;对于C,显然,,,C正确;对于D,因为,所以,即,D不正确.故选:C3、B【解析】由均值不等式可得,分析即得解【详解】由题意,,由均值不等式,当且仅当,即时等号成立故,有最小值0故选:B4、D【解析】根据命题的否定的定义写出命题的否定,然后判断【详解】命题:,的否定是:,故选:D5、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.6、A【解析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;7、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.8、D【解析】,选D点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.9、A【解析】根据角的旋转与三角函数定义得,利用两角和的正切公式求得,然后待求式由二倍公式,“1”的代换,变成二次齐次式,转化为的式子,再计算可得【详解】解:将角的终边按顺时针方向旋转后所得的角为,因为旋转后的终边过点,所以,所以.所以.故选:A10、B【解析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【详解】解:令函数,则,则,当时,.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题12、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题13、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:214、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域15、【解析】根据同角三角函数的关系求得,再运用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【详解】解:因为,所以,所以,所以.故答案为:.16、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可(2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可【详解】设,则代入轨迹的方程为(2)设关于轴对称点设过的直线,即∵,,∴或∴反射光线所在即即18、(1)(2)【解析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.19、(1)2x-y-2=0;(2)【解析】(1)由圆的方程可求出圆心,再根据直线过点P、C,由斜率公式求出直线的斜率,由点斜式即可写出直线l的方程;(2)根据点斜式写出直线l的方程,再根据弦长公式即可求出【详解】(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为,直线l的方程为y=2(x-1),即2x-y-2=0(2)当直线l的倾斜角为45º时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.所以圆心C到直线l的距离为因为圆的半径为3,所以,弦AB的长【点睛】本题主要考查直线方程的求法以及圆的弦长公式的应用,意在考查学生的数学运算能力,属于基础题20、(Ⅰ)(Ⅱ)或【解析】(Ⅰ)先求出直线的方程,进而得到D点坐标,为直径长,从而得到△的外接圆的方程;(Ⅱ)由题意可得,,从而解得点的坐标【详解】(Ⅰ)解法一:由已知得,直线的方程为,即,联立方程组得:,解得,又,△的外接圆的半径为∴△的外接圆的方程为.解法二:由已知得,,且为△的外心,∴△为直角三角形,为线段的中点,∴圆心,圆的半径,∴△的外接圆的方程为.或线段即为△的外接圆的直径,故有△的外接圆的方程为,即(Ⅱ)设点的坐标为,由已知得,,所在直线方程,到直线的距离,①又点的坐标为满足方程,即②联立①②解得:或,∴点的坐标为或【点睛】本题考查了圆的方程,直线的交点,点到直线的距离,考查了逻辑推理能力与计算能力,属于基础题.21、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论