版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲轨迹方程的求法(合理建立坐标系)考情分析求曲线的轨迹方程是解析几何的两个基本问题之一。求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点。二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.已知直角坐标平面上点Q(2,0)和圆C:,动点M到圆C的切线长与的比等于常数(如图),求动点M的轨迹方程,说明它表示什么曲线.【变式训练】【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。求点P的轨迹方程;(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。(二)相关点代入法据相关点所满足的方程,通过转换而求动点的轨迹方程例2.如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程【变式训练1】已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.(1)若点是线段的中点,试求线段的中点的轨迹方程;(2)若曲线与有公共点,试求的最小值.(三)参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程.例3设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线【变式训练1】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右边部分的交点为Q,点P在该直线上,且,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.(四)定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例4已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.【变式训练1】在直角坐标系中,曲线的点均在:外,且对上任意一点,到直线的距离等于该点与圆上点的距离的最小值.(Ⅰ)求曲线的方程;(Ⅱ)设()为圆外一点,过作圆的两条切线,分别与曲线相交于点A,B和C,D.证明:当在直线上运动时,四点A,B,C,D的纵坐标之积为定值.四、迁移应用1.在平面直角坐标系中,已知点,点在直线上,点满足,,点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)为C上动点,为C在点处的切线,求点到距离的最小值.
2.已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.(Ⅰ)求抛物线的方程;(Ⅱ)当点为直线上的定点时,求直线的方程;(Ⅲ)当点在直线上移动时,求的最小值.3.在直角坐标系中,曲线:与直线交与,两点,(Ⅰ)当时,分别求在点和处的切线方程;(Ⅱ)轴上是否存在点,使得当变动时,总有?说明理由.4.设为坐标原点,动点在椭圆:上,过做轴的垂线,垂足为,点满足QUOTE.(1)求点的轨迹方程;(2)设点在直线上,且QUOTE.证明:过点且垂直于的直线过的左焦点.
5.如图5,为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.(I)求的方程;(Ⅱ)是否存在直线,使得与交于两点,与只有一个公共点,且?证明你的结论.6.设圆与两圆中的一个内切,另一个外切.(1)求的圆心轨迹L的方程;(2)已知点M,且为上动点,求的最大值及此时点P的坐标.第3讲轨迹方程的求法(合理建立坐标系)考情分析求曲线的轨迹方程是解析几何的两个基本问题之一。求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点。二、经验分享 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.已知直角坐标平面上点Q(2,0)和圆C:,动点M到圆C的切线长与的比等于常数(如图),求动点M的轨迹方程,说明它表示什么曲线.【解析】:设M(x,y),直线MN切圆C于N,则有,即,.整理得,这就是动点M的轨迹方程.若,方程化为,它表示过点和x轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆.【变式训练】【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。求点P的轨迹方程;(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。因此点P的轨迹方程为。(2)由题意知。设,则,。由得,又由(1)知,故。所以,即。又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F。(二)相关点代入法据相关点所满足的方程,通过转换而求动点的轨迹方程例2.如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程【解析】设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|又因为R是弦AB的中点,依垂径定理在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y2-4x-10=0,得-10=0整理得x2+y2=56,这就是所求的轨迹方程【变式训练1】已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.(1)若点是线段的中点,试求线段的中点的轨迹方程;(2)若曲线与有公共点,试求的最小值.【解析】(1)联立与得,则中点,设线段的中点坐标为,则,即,又点在曲线上,∴化简可得,又点是上的任一点,且不与点和点重合,则,即,∴中点的轨迹方程为().(2)曲线,即圆:,其圆心坐标为,半径,设圆与直线:相切于点,则有,即.过点与直线垂直的直线的方程是,即.由,解得,.当时,.∵分别是上的点的最小和最大横坐标,∴切点,故.(三)参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程.例3设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线【解法一】设A(x1,y1),B(x2,y2),M(x,y)(x≠0)直线AB的方程为x=my+a由OM⊥AB,得m=-由y2=4px及x=my+a,消去x,得y2-4pmy-4pa=0所以y1y2=-4pa,x1x2=所以,由OA⊥OB,得x1x2=-y1y2所以故x=my+4p,用m=-代入,得x2+y2-4px=0(x≠0)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点【解法二】设OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得∴AB的方程为,过定点,由OM⊥AB,得M在以ON为直径的圆上(O点除外)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点【解法三】设M(x,y)(x≠0),OA的方程为,代入y2=4px得则OB的方程为,代入y2=4px得由OM⊥AB,得M既在以OA为直径的圆……①上,又在以OB为直径的圆……②上(O点除外),+②得x2+y2-4px=0(x≠0)故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点【变式训练1】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右边部分的交点为Q,点P在该直线上,且,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.【解析】:(1)设所求椭圆方程为由题意得解得所以椭圆方程为.(2)设点解方程组得由和得其中t>1.消去t,得点P轨迹方程为和.其轨迹为抛物线在直线右侧的部分和抛物线在直线在侧的部分.【方法】求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.(四)定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例4已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.【解析】:如图所示,设动圆和定圆内切于点.动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即.∴点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:.说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.【变式训练1】在直角坐标系中,曲线的点均在:外,且对上任意一点,到直线的距离等于该点与圆上点的距离的最小值.(Ⅰ)求曲线的方程;(Ⅱ)设()为圆外一点,过作圆的两条切线,分别与曲线相交于点A,B和C,D.证明:当在直线上运动时,四点A,B,C,D的纵坐标之积为定值.【解析】(Ⅰ)【解法1】:设M的坐标为,由已知得,易知圆上的点位于直线的右侧.于是,所以.化简得曲线的方程为.【解法2】:由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.(Ⅱ)当点P在直线上运动时,P的坐标为,又,则过P且与圆相切的直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得①设过P所作的两条切线的斜率分别为,则是方程①的两个实根,故②由得③设四点A,B,C,D的纵坐标分别为,则是方程③的两个实根,所以④同理可得⑤于是由②,④,⑤三式得.所以,当P在直线上运动时,四点的纵坐标之积为定值6400.四、迁移应用1.在平面直角坐标系中,已知点,点在直线上,点满足,,点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)为C上动点,为C在点处的切线,求点到距离的最小值.【解析】(Ⅰ)设,由已知得,.所以=,=(0,),=(,-2).再由题意可知(+)•
=0,即(,)•
(,-2)=0.所以曲线C的方程式为.(Ⅱ)设为曲线C:上一点,因为,所以的斜率为,因此直线的方程为,即.则点到的距离.又,所以当=0时取等号,所以点到距离的最小值为2.2.已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.(Ⅰ)求抛物线的方程;(Ⅱ)当点为直线上的定点时,求直线的方程;(Ⅲ)当点在直线上移动时,求的最小值.【解析】(Ⅰ)依题意,解得(负根舍去)抛物线的方程为.(Ⅱ)设点,,,由,即得.∴抛物线在点处的切线的方程为,即.∵,∴.∵点在切线上,∴.①同理,.②综合①、②得,点的坐标都满足方程.∵经过两点的直线是唯一的,∴直线的方程为,即.(Ⅲ)由抛物线的定义可知,所以联立,消去得,当时,取得最小值为.3.在直角坐标系中,曲线:与直线交与,两点,(Ⅰ)当时,分别求在点和处的切线方程;(Ⅱ)轴上是否存在点,使得当变动时,总有?说明理由.【解析】(Ⅰ)由题设可得,,或,.∵,故在=处的导数值为,在处的切线方程为,即.故在处的导数值为,在处的切线方程为,即.故所求切线方程为或.(Ⅱ)存在符合题意的点,证明如下:设为符合题意的点,,,直线,的斜率分别为.将代入的方程整理得.∴.∴==.当时,有=0,则直线的倾斜角与直线的倾斜角互补,故∠=∠,所以符合题意.4.设为坐标原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园网的规划与实施
- 字体设计的艺术魅力
- 美妆美甲职业规划
- 伟大的悲剧课件下载
- 城市道路挖掘批准书(存根)、城市道路挖掘批准书
- 运用精益管理(TPS)缩短医院门诊患者就诊时间医院品质管理成果汇报
- 教育招商总监工作规划
- 数字农业职业规划
- 第一单元 混合运算(复习课件)北师大版三年级数学上册课件+练习 (素养达标课件+教案+练习)三年级数学上册同步备课 (北师大版)
- 北师大版四年级语文上册《井底之蛙》公开课讲义
- 食堂应急疏散预案
- 2025届广东省广州市番禺区禺山高级中学高考压轴卷数学试卷含解析
- 2024年资助政策主题班会课件
- 救护车交通法规培训
- 厂区医务室服务合同
- 水利信息化视频监视前端单元工程质量验收评定表、过程性用表
- DB11∕T 2077-2023 城市副中心 新型电力系统10kV及以下配电网设施配置技术规范
- 24春国家开放大学《离散数学》大作业参考答案
- 水闸水力计算.xls
- 现代汽车灯具
- 体育卫生在学校体育的重要性
评论
0/150
提交评论