2023-2024学年广西壮族自治区来宾市高三5月调研考试数学试题理试题_第1页
2023-2024学年广西壮族自治区来宾市高三5月调研考试数学试题理试题_第2页
2023-2024学年广西壮族自治区来宾市高三5月调研考试数学试题理试题_第3页
2023-2024学年广西壮族自治区来宾市高三5月调研考试数学试题理试题_第4页
2023-2024学年广西壮族自治区来宾市高三5月调研考试数学试题理试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广西壮族自治区来宾市高三5月调研考试数学试题理试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b2.已知函数,若,则a的取值范围为()A. B. C. D.3.已知实数满足约束条件,则的最小值是A. B. C.1 D.44.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;5.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.66.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.7.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.8.若变量,满足,则的最大值为()A.3 B.2 C. D.109.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或10.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.0111.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A. B.1 C. D.i12.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.14.直线过圆的圆心,则的最小值是_____.15.已知数列中,为其前项和,,,则_________,_________.16.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.18.(12分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.19.(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.20.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.21.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.22.(10分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.2.C【解析】

求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.3.B【解析】

作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.4.A【解析】

要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.5.A【解析】

作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.6.D【解析】

利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.7.B【解析】

设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.8.D【解析】

画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.9.C【解析】

将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.10.D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.11.A【解析】

由虚数单位i的运算性质可得,则答案可求.【详解】解:∵,∴,,则化为,∴z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.12.D【解析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.10【解析】

作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.14.【解析】

直线mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性质即可得出.【详解】∵mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,当且仅当m=n时取等号.∴则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.15.8(写为也得分)【解析】

由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.16.【解析】

记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:故答案为:【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析(3)证明见解析【解析】

(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.【详解】(1)解:∵无穷数列的前项中最大值为,最小值为,,,是递增数列,∴,∴的前项和.(2)证明:∵,,∴,∴,∵,∴,∴的“极差数列”仍是(3)证明:当数列是等差数列时,设其公差为,,根据,的定义,得:,,且两个不等式中至少有一个取等号,当时,必有,∴,∴是一个单调递增数列,∴,,∴,∴,∴是等差数列,当时,则必有,∴,∴是一个单调递减数列,∴,,∴,∴.∴是等差数列,当时,,∵,中必有一个为0,根据上式,一个为0,为一个必为0,∴,,∴数列是常数数列,则数列是等差数列.综上,若数列是等差数列,则数列也是等差数列.【点睛】本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.18.(1);(2).【解析】

(1)先求出角,进而可得出,则①②中有且只有一个正确,③正确,然后分①③正确和②③正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,,,为钝角,与矛盾,故①②中仅有一个正确,③正确.显然,得.当①③正确时,由,得(无解);当②③正确时,由于,,得;(2)如图,因为,,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.19.(1)(2)证明见解析【解析】

(1)求出的导数,根据导函数的性质判断函数的单调性,再利用函数单调性解函数型不等式;(2)构造函数,利用导数判断在区间上单调递减,结合可得结果.【详解】(1)若,则.设,则,所以在上单调递减,在上单调递增.又当时,;当时,;当时,,所以所以在上单调递增,又,所以不等式的解集为.(2)设,再令,,在上单调递减,又,,,,,.即【点睛】本题考查利用函数的导数来判断函数的单调性,再利用函数的单调性来解决不等式问题,属于较难题.20.(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,则,取时,有,与矛盾.则.得证.点睛:该题考查的是有关命题的证明问题,在证题的过程中,注意对题中的条件的等价转化,注意对式子的等价变形,以及证题的思路,要掌握证明问题的方法,尤其是反证法的证题思路以及证明步骤.21.(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性质可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论