2025届浙江省台州市临海市九上数学开学统考试题【含答案】_第1页
2025届浙江省台州市临海市九上数学开学统考试题【含答案】_第2页
2025届浙江省台州市临海市九上数学开学统考试题【含答案】_第3页
2025届浙江省台州市临海市九上数学开学统考试题【含答案】_第4页
2025届浙江省台州市临海市九上数学开学统考试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2025届浙江省台州市临海市九上数学开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=()A.140° B.120° C.110° D.100°2、(4分)在△ABC中,AB=,BC=,AC=,则()A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B3、(4分)已知一次函数y=kx+b,-3<x<1时对应的y值为-1<y<3,则b的值是()A.2 B.3或0 C.4 D.2成04、(4分)使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠35、(4分)将以此函数y=2x-1的图像向上平移2个单位长度后,得到的直线解析式为()A.y=2x+2 B.y=2x+1 C.y=2x+3 D.y=2x-56、(4分)若实数3是不等式2x–a–2<0的一个解,则a可取的最小正整数为(

)A.2 B.3 C.4 D.57、(4分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A. B. C. D.8、(4分)若一次函数不经过第三象限,则的取值范围为A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)两个实数,,规定,则不等式的解集为__________.10、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.11、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______12、(4分)如图,为直角三角形,其中,则的长为__________________________.13、(4分)如图在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于_________.三、解答题(本大题共5个小题,共48分)14、(12分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)当每吨售价是240元时,此时的月销售量是多少吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?15、(8分)用适当的方法解下列方程(1)(2)16、(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.17、(10分)直线分别与轴交于两点,过点的直线交轴负半轴于,且.求点坐标.求直线的解析式.直线的解析式为,直线交于点,交于点,求证:.18、(10分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.(1)求证:△MEF是等腰三角形;(2)若∠A=,∠ABC=50°,求∠EMF的度数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.20、(4分)两个相似三角形的最短边长分别为5cm和3cm,它们的周长之差为12cm,那么较大三角形的周长为_____cm.21、(4分)因式分解:=.22、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.23、(4分)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是球队.二、解答题(本大题共3个小题,共30分)24、(8分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。25、(10分)如图,在平面直角坐标系中,已知直线,都经过点,它们分别与轴交于点和点,点、均在轴的正半轴上,点在点的上方.(1)如果,求直线的表达式;(2)在(1)的条件下,如果的面积为3,求直线的表达式.26、(12分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元)53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.【详解】解:∵AD∥BC,

∴∠B+∠BAD=180°,

∵∠BAD=110°

∴∠B=70°,

∵AC=BC,

∴∠B=∠BAC=70°,

∴∠DAC=110°-70°=40°,

∵AD=DC,

∴∠DAC=∠DCA=40°,

∴∠D=180°-∠DAC-∠DCA=100°,

故选:D.本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.2、A【解析】试题解析:∵在△ABC中,AB=,BC=,AC=,∴∴∠A=90°故选A.3、D【解析】

本题分情况讨论①x=-3时对应y=-1,x=1时对应y=3;②x=-3时对应y=3,x=1时对应y=-1;将每种情况的两组数代入即可得出答案.【详解】①将x=-3,y=-1代入得:-1=-3k+b,将x=1,y=3代入得:3=k+b,解得:k=1,b=2;函数解析式为y=x+2,经检验验符合题意;②将x=-3,y=3,代入得:3=-3k+b,将x=1,y=-1代入得:-1=k+b,解得:k=-1,b=1,函数解析式为y=-x,经检验符合题意;综上可得b=2或1.故选D.本题考查待定系数法求函数解析式,注意本题需分两种情况,不要漏解.4、D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得解得,x≥2且x≠1.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件5、B【解析】

直接根据一次函数图象与几何变换的有关结论求解.【详解】解:直线y=2x-1向上平移2个单位后得到的直线解析式为y=2x-1+2,即y=2x+1,

故选B.本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.6、D【解析】解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6﹣a﹣2<0,解得:a>4,则a可取的最小正整数为5,故选D.点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.7、A【解析】

解:根据题意,需得出x与y的关系式,也就是PB与CQ的关系,∵AB=AC=2,∠BAC=20°∴△ABC是等腰三角形,∠ABC=∠ACB,又∵三角形内角和是180°∴∠ABC=(180°-∠BAC)÷2=80°∵三角形的外角等于与其不相邻的两个内角之和∴∠PAB+∠P=∠ABC即∠P+∠PAB=80°,又∵∠BAC=20°,∠PAQ=100°,∴∠PAB+∠QAC=80°,∴∠P=∠QAC,同理可证∠PAB=∠Q,∴△PAB∽△AQC,∴,代入得得出,y与x的关系式,由此可知,这是一个反比例函数,只有选项A的图像是反比例函数的图像.故选:A本题考查三角形的外角性质,等腰三角形的性质,相似三角形的判定与性质,反比例函数图像.难度系数较高,需要学生综合掌握三角形的原理,相似三角形的判定,以及基本函数图像综合运用.8、A【解析】

解:∵一次函数不经过第三象限,,解之得,.故选A.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据题意列出方程,再根据一元一次不等式进行解答即可.【详解】由规定,可得.所以,,就是,解得,.故答案为:此题考查解一元一次不等式,解题关键在于理解题意.10、1.【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==1cm.故答案为:1.此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.11、()【解析】

根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.【详解】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),∵2÷4=503…1,∴点B2与B1同在一个象限内,∵-4=-22,8=23,16=24,∴点B2(22,-22).故答案为:(22,-22).此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.12、.【解析】

由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.【详解】解:∵∠B=90°,∠BAD=45°,∴∠BDA=45°,AB=BD,∵∠DAC=15°,∴∠C=30°,∴AB=BD=AC=×2=1,∴BC===,∴CD=BC-BD=-1.故答案为-1.本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.13、4【解析】

根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.【详解】∵四边形ABCD是平行四边形,

∴AB∥CD,AD=BC=8,CD=AB=6,

∴∠F=∠DCF,

∵∠C平分线为CF,

∴∠FCB=∠DCF,

∴∠F=∠FCB,

∴BF=BC=8,

同理:DE=CD=6,

∴AF=BF-AB=2,AE=AD-DE=2,

∴AE+AF=4;本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.三、解答题(本大题共5个小题,共48分)14、(1)60;(2)将售价定为200元时销量最大.【解析】

(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.

(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.【详解】(1)45+×7.5=60;(2)设售价每吨为x元,根据题意列方程为:(x-100)(45+×7.5)=9000,化简得x2-420x+44000=0,解得x1=200,x2=220(舍去),因此,将售价定为200元时销量最大.本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.15、(1),;(2)或.【解析】

(1)先整理成一元二次方程的一半形式,然后用求根公式法求解即可;(2)先移项,然后用配方法求解即可.【详解】(1)原方程整理为一般式为:,,,,,则,,;(2),,,,或,或.本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.16、(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.17、(1)(0,6);(2)y=3x+6;(3)证明见详解【解析】

(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;

(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;

(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.【详解】(1把A(6,0)代入y=-x+b得-6+b=0,解得b=6,

所以直线AB的解析式为y=-x+6,

当x=0时,y=-x+6=6,

所以点B的坐标为(0,6);

(2)∵OB:OC=3:1,而OB=6,

∴OC=2,

∴C点坐标为(-2,0),

设直线BCy=mx+n,

把B(0,6),C(-2,0)分别代入得,解得∴直线BC的解析式为y=3x+6;(3)证明:解方程组解得则E(3,3),解方程组得则F(-3,-3),所以S△EBO=×6×3=9,

S△FBO=×6×3=9,

所以S△EBO=S△FBO.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.18、(1)见解析;(2)∠EMF=40°【解析】

(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.【详解】(1)∵CF⊥AB于点F,BE⊥AC于点E,∴△BCE和△BCF为直角三角形∵M为BC的中点∴ME=BC,MF=BC∴ME=MF即△MEF是等腰三角形(2)∵∠A=70°,∠ABC=50°,∴∠ACB=180°-70°-50°=60°由(1)可知MF=MB,ME=MC,∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、2,0≤x≤2或≤x≤2.【解析】

(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20②由①②得,∴,故≤x≤2符合题意.故答案为0≤x≤2或≤x≤2.此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据20、1【解析】

根据已知条件即可求出两个三角形的相似比为5:3,然后根据相似三角形的性质,可设大三角形的周长为5x,则小三角形的周长为3x,根据周长之差为12cm,列方程并解方程即可.【详解】解:∵两个相似三角形的最短边分别是5cm和3cm,∴两个三角形的相似比为5:3,设大三角形的周长为5x,则小三角形的周长为3x,由题意得,5x﹣3x=12,解得,x=6,则5x=1,故答案为:1.此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.21、【解析】

直接应用平方差公式即可求解..【详解】.本题考查因式分解,熟记平方差公式是关键.22、9或10.1【解析】

根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.【详解】等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解得:k=2,则b+c=2k+1=1,△ABC的周长为4+1=9;当a为腰时,则b=4或c=4,若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,则42-4(2k+1)+1(k-)=0,解得:k=,解方程x2-x+10=0,解得x=2.1或x=4,则△ABC的周长为:4+4+2.1=10.1.23、甲.【解析】试题分析:根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.解:∵S甲2<S乙2,∴甲队整齐.故填甲.考点:方差;算术平均数.二、解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论