版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届山西省运城盐湖区七校联考数学九年级第一学期开学调研模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,72、(4分)如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A.4 B. C. D.83、(4分)方程的根是A. B. C., D.,4、(4分)下列四组线段中。可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,3,35、(4分)多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)26、(4分)某市5月份中连续8天的最高气温如下(单位:):32,30,34,36,36,33,37,38.这组数据的众数是()A.34 B.37 C.36 D.357、(4分)如图,在▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC8、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是()A.垂直 B.相等 C.平分 D.平分且垂直二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化简=_____.10、(4分)当x=2018时,的值为____.11、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.12、(4分)如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.13、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.15、(8分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.(1)求该反比例函数的表达式.(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.16、(8分)解不等式组:,并将解集在数轴上表示出来.17、(10分)阅读下面材料:数学课上,老师出示了这祥一个问题:如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现点H是线段EF的中点”。小吉:“∠BFE=75°,说明图形中隐含着特殊角”;小亮:“通过观察和度量,发现CO⊥BD”;小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.请回答:(1)证明FH=EH;(2)求的值;(3)若AB=4.MH=,则GE的长度为_____________.18、(10分)如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.20、(4分)计算______.21、(4分)在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.22、(4分)将函数的图象向上平移3个单位长度,得到的函数图象的解析式为______.23、(4分)如图,直线经过点和点,直线经过点,则不等式组的解集是______.二、解答题(本大题共3个小题,共30分)24、(8分)本工作,某校对八年级一班的学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图所示的两幅不完整的统计图(校服型号以身高作为标准,共分为6种型号)。条形统计图扇形统计图根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿型校服的学生有多少名?(2)在条形统计图中,请把空缺部分补充完整;(3)在扇形统计图中,请计算型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的中位数。25、(10分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?26、(12分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:(1)根据所给信息填写表格;平均数(分)中位数(分)众数(分)七年级
85
八年级85
100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为=6.5,众数是7,故选C.本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.2、D【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【详解】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则,如图所示,当直线经过D点,设交AB与N,则,作于点M.与轴形成的角是,轴,,则△DMN为等腰直角三角形,设由勾股定理得,解得,即DM=2则平行四边形的面积是:.故选:D.本题考查一次函数与几何综合,解题的关键利用l与m的函数图像判断平行四边形的边长与高.3、C【解析】
由题意推出x=0,或(x-1)=0,解方程即可求出x的值【详解】,,,故选.此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键4、B【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.42+52≠62,不可以构成直角三角形,故A选项错误;B.1.52+22=2.52,可以构成直角三角形,故B选项正确.C、22+32≠42,不可以构成直角三角形,故C选项错误;
D、12+32≠32,不可以构成直角三角形,故D选项错误;故选:B本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5、A【解析】试题分析:分别将多项式与多项式进行因式分解,再寻找他们的公因式.本题解析:多项式:,多项式:,则两多项式的公因式为x-1.故选A.6、C【解析】
根据众数的定义求解.【详解】∵36出现了2次,故众数为36,故选C.此题主要考查数据的众数,解题的关键是熟知众数的定义.7、C【解析】试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分.考点:平行四边形的性质.8、D【解析】
先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.【详解】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选D.本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
,故答案为考点:分母有理化10、1.【解析】
先通分,再化简,最后代值即可得出结论.【详解】∵x=2018,∴====x﹣1=2018﹣1=1,故答案为:1.此题主要考查了分式的加减,找出最简公分母是解本题的关键.11、-1【解析】
一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.【详解】解:一次函数y=kx﹣1的图象经过点(﹣2,1),即当x=﹣2时,y=1,可得:1=-2k﹣1,解得:k=﹣1.则k的值为﹣1.本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.12、10,3.【解析】
过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.13、1【解析】
根据边之间的关系,运用勾股定理,列方程解答即可.【详解】由题意可设两条直角边长分别为x,2x,由勾股定理得x2+(2x)2=(1)2,解得x1=1,x2=-1舍去),所以较短的直角边长为1.故答案为:1本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)正方形的边长为8cm.【解析】
(1)根据两角对应相等的两个三角形相似即可证明;
(2)利用相似三角形的性质,构建方程即可解决问题;【详解】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为xcm.∴AP=AD-x=12-x(cm)∵△AEF∽△ABC,AD⊥BC,∴,∴,∴x=8,∴正方形的边长为8cm.本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.15、(1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8【解析】
根据题意可得,可得C点坐标,则可求反比例函数解析式
根据题意可得D点坐标,代入解析式可得结论.
由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.【详解】解:(1)∵ABOC是平行四边形∴AC=BO=6∴C(4,4)∵反比例函数y=(x>0)的图象经过点C.∴4=∴k=16∴反比例函数解析式y=(2)∵点A(10,4),点B(6,0),∴AB的中点D(8,2)当x=8时,y==2∴D点在反比例函数图象上.(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴设P(a,)S△COD=S▱ABOC﹣S△ACD﹣S△OBD∴S△COD=S▱ABOC=12∵S△POC<S△COD∴,∴a>2或a<﹣8(舍去)当点P在OC的下方,则易得4<a<8综上所述:2<a<4或4<a<8本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几何意义,平行四边形的性质,设,根据题意列出关于a的不等式是本题关键.16、-7<≤1.数轴见解析.【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:解不等式①,得≤1解不等式②,得>-7∴不等式组的解集为-7<≤1.在数轴上表示不等式组的解集为故答案为-7<≤1.本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.17、(1)见解析;(2);(3)【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.【详解】(1)如图1,连接DE,DF∵正方形ABCD∴AD=CD=CB=AB∠A=∠ADC=∠BCD=∠ABC=90°∴∠DCE=∠A=90°∴在ΔFAD和ΔECD中∴ΔDAF≌ΔDCE(SAS)∴DF=DE∵DH⊥EF∴FH=EH(2)如图2,连接BH,∵ΔFAD≌ΔECD∴∠ADF=∠CDE∵∠ADC=90°=∠ADF+∠FDC∴∠EDC+∠FDC=90°∴∠FDE=90°∴DH=EF=EH=FH∵∠FBC=90°∴BH=EF=EH=FH∴BH=DH∴在ΔBHC和ΔDHC中∴ΔBHC≌ΔDHC(SSS)∴∠BCH=∠DCH∴OC⊥BD∴∠HOB=90°∵BH=FH,∠BFE=75°∴∠FBH=∠BFH=75°∵正方形ABCD∴∠ABD=45°,∠HBO=30°∴OH=BH∴;(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°,
∵AM=MB=2,∵CG∥AB,由△EHG∽△BCG,可得本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.18、△ABM的面积是700cm2.【解析】
过M作ME⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CM=ME,即可解答【详解】过M作ME⊥AB于E,∵∠C=90°,AM平分∠CAB,CM=20cm,∴CM=ME=20cm,∴△ABM的面积是×AB×ME=×70cm×20cm=700cm2.此题考查角平分线的性质和三角形面积,解题关键在于利用角平分线的性质求出CM=ME一、填空题(本大题共5个小题,每小题4分,共20分)19、21【解析】10+7+4=2120、【解析】
先进行二次根式的化简,然后合并.【详解】解:原式.故答案为:.本题考查了二次根式的加减法,正确化简二次根式是解题的关键.21、0.1.【解析】
直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.本题考查频数与频率,正确掌握频率求法是解题关键.22、【解析】
根据一次函数的图像平移的特点即可求解.【详解】函数的图象向上平移3个单位长度,得到的函数图象的解析式为+3,∴函数为此题主要考查一次函数的性质,解题的关键是熟知一次函数平移的特点.23、【解析】
解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【详解】解:根据题意得到y=kx+b与y=2x交点为A(-1,-2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(-2,0),此时自变量x的取值范围,是-2<x<-1.即不等式2x<kx+b<0的解集为:-2<x<-1.故答案为:-2<x<-1.本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.二、解答题(本大题共3个小题,共30分)24、(1)50,10;(2)见解析;(3)14.4°;(4)170型【解析】
(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;
(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据中位数的定义求解即可.【详解】解:(1)15÷30%=50(名),50×20%=10(名),
即该班共有50名学生,其中穿175型校服的学生有10名.(2)185型的学生人数为:50-3-15-15-10-5=50-48=2(名),补全统计图如图所示:(3)185型校服所对应的扇形圆心角为:;(4)∵第25和26名学生都穿170型,∴中位数是170型.本题考查的是条形统计图和扇形统计图的综合运用,中位数的定义.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25、(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【解析】
(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度初中生安全行为规范及管理合同范本4篇
- 2025年度基础设施建设项目承包担保合同4篇
- 2025年度高端美容院资深美容师聘用合同4篇
- 2025年度旅游设施租赁服务合同3篇
- 2025年度出租车企业车辆承包运营管理协议4篇
- 2025年现代农业设施装修与智能管理合同3篇
- 2025年度智能穿戴设备市场调研与市场推广合同4篇
- 二零二五年度地下车库使用权转让协议4篇
- 2025年度美团外卖商家智能物流配送协议3篇
- 2025年度新型门窗安装与智能家居系统集成合同4篇
- 多感官交互对文化参与的影响
- 2024至2030年中国家庭维修行业发展前景预测及投资策略研究报告
- 文化旅游场所运营设备更新项目资金申请报告-超长期特别国债投资专项
- 【人教版】二年级数学上册说课稿-第2课时 直角的认识
- JTG F40-2004 公路沥青路面施工技术规范
- 成都市2022级(2025届)高中毕业班摸底测试(零诊)英语试卷(含答案)
- 江苏省南京市玄武区2022-2023学年七年级下学期期末语文试题
- 《金属非金属地下矿山监测监控系统建设规范》
- 房建EPC项目施工部署及-物资、机械设备、劳动力投入计划
- 如何提高护士的应急能力
- 2024届四川省泸州市江阳区八年级下册数学期末学业质量监测试题含解析
评论
0/150
提交评论