版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届山东省临沭县青云镇中心中学九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C. D.2、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.183、(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16 B.18 C.24 D.324、(4分)重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为xkm/h,则根据题意可列方程为()A.700x-C.700x-5、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()A. B.C. D.6、(4分)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(
)A.x<2
B.x>5
C.2<x<5
D.0<x<2或x>57、(4分)如图,这组数据的组数与组距分别为()A.5,9 B.6,9C.5,10 D.6,108、(4分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.10、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____11、(4分)如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________
.12、(4分)因式分解:x2﹣9y2=.13、(4分)方程的根是_____.三、解答题(本大题共5个小题,共48分)14、(12分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?15、(8分)(1)计算:(2)解方程:.16、(8分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?17、(10分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.18、(10分)如图,正方形中,是对角线上一个动点,连结,过作,,,分别为垂足.(1)求证:;(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.20、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________21、(4分)的化简结果为________22、(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_____.23、(4分)若关于的分式方程有解,则的取值范围是_______.二、解答题(本大题共3个小题,共30分)24、(8分)解下列方程:(1)(2)25、(10分)为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:甲:7,8,6,10,10,7乙:7,7,8,8,10,8,如果你是教练你会选拨谁参加比赛?为什么?26、(12分)如图,,,.求证:四边形是平行四边形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.∵∠AOD=60°,∴△OAB是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B.2、B【解析】
延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选B.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.3、C【解析】
过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据S△ABC=S△BCD+S△ABD列式计算即可得解.【详解】如图,过点D作DE⊥AB于E,∵∠ACB=90°,BD平分∠ABC,∴DE=CD=3,∴S△ABC=S△BCD+S△ABD=BC⋅CD+AB⋅DE=(BC+AB)×3∵BC+AB=16,∴△ABC的面积=×16×3=24.故选C.本题考查角平分线的性质定理,作辅助线是解题关键.4、A【解析】
设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.【详解】解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为700x平均速度提高了25km/h后所花时间为700x+25,根据题意提速后所花时间缩短3∴700x故选:A.此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.5、C【解析】
本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.【详解】最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.故本题选C.本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.6、D【解析】
根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.【详解】根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.故选D.本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.7、D【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.【详解】解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.8、C【解析】
此题涉及的知识点是旋转的性质,由旋转的性质,再根据∠BAC=30°,旋转60°,可得到∠BAC1=90°,结合勾股定理即可求解.【详解】解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,AC1=AC=6,在RtBAC1中,∠BAC=90°,AB=8,AC1=6,∴,故本题选择C.此题重点考查学生对于旋转的性质的理解,也考查了解直角三角形,等腰三角形的性质和含30度角的直角三角形的性质,熟练掌握以上知识点是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2.1.【解析】
解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.10、m>【解析】
根据图象的增减性来确定(2m-1)的取值范围,从而求解.【详解】∵一次函数y=(2m-1)x+1,y随x的增大而增大,∴2m-1>1,解得,m>,故答案是:m>.本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.11、2【解析】
先由平行四边形对边相等得AD=BC,作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.【详解】如图,过D作DE⊥AB交AB于E,∵四边形ABCD为平行四边形,∴AD=BC=2,∵∠A=45∴△ADE为等腰直角三角形,∴AE=DE,根据勾股定理得AE2∴2DE∴DE∴DE=2即AB和CD之间的距离为2,故答案为:2本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.12、.【解析】因为,所以直接应用平方差公式即可:.13、,.【解析】方程变形得:x1+1x=0,即x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x1=﹣1.故答案是:x1=0,x1=﹣1.三、解答题(本大题共5个小题,共48分)14、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件【解析】
(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据题意得:12x+150(200-x)=32400,解得:x=2,200-x=200-2=1.∴购进甲、乙两种服装2件、1件.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:,解得:70≤y≤2.∵y是正整数,∴共有11种方案.(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.①当0<a<10时,10-a>0,W随y增大而增大,∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.③当10<a<20时,10-a<0,W随y增大而减小,∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.15、(1);(2)x1=0,x2=﹣1.【解析】
(1)先算乘法,根据二次根式化简,再合并同类二次根式即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式==;(2)x2+1x=0,x(x+1)=0,x=0,x+1=0,x1=0,x2=﹣1.本题考查二次根式的混合运算和解一元二次方程,能正确运用运算法则进行化简是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.16、(1);(2)55元【解析】
(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.综上所述:y与x之间的函数关系式为.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+1)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.17、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.【解析】
首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.【详解】解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料由题可得:解得x=1.5(米)经检验x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料(2)由题∴∵,∴l随n增大而增大,∴当时,考点:分式方程的应用,一次函数的性质.18、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.【解析】
(1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;(2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.【详解】解:(1)∵四边形ABCD为正方形,∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,∴△ABD是等腰直角三角形,∴AB=BD,∵GE⊥CD,GF⊥BC,∴△DGE和△BGF是等腰直角三角形,∴GE=DG,GF=BG,∴GE+GF=(DG+BG)=BD,∴GE+GF=AB;(2)①GE2+GF2=AG2,证明:连接CG,如图所示:在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形EGFC是矩形,∴CE=GF,∵GE2+CE2=CG2,∴GE2+GF2=AG2;②设GE=CF=x,则GF=BF=6−x,∵GE2+GF2=AG2,∴,解得:x=1或x=5,当x=1时,则BF=GF=5,∴BG=,当x=5时,则BF=GF=1,∴BG=,综上,的长为或.本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、4.1.【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x1+41=(10﹣x)1,解得:x=4.1,答:折断处离地面的高度OA是4.1尺.故答案为:4.1.本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.20、【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.【详解】解:如图所示,∵∠ABC=90°,∠A=30°,AB=5,∴设BC=x,则AC=2x∵∴∴x=5∴BC=5,AC=10在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线∴∴△ADB的周长为:故答案为:本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.21、【解析】
根据二次根式的乘法,化简二次根式即可.【详解】解:,故答案为:.本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.22、2【解析】
解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电焊技术培训服务合同(2024年度)
- 2024年度文化艺术活动合作协议
- 2024年度风力发电项目投资建设合同
- 导演合同完整版
- 二零二四年度木托盘防腐处理服务合同
- 二零二四年度宾馆网络建设合同:规定宾馆网络建设的具体内容和标准
- 2024年度市场营销与代加工生产协议2篇
- 拆除合同范本简单16
- 二零二四年度采购合同书范例
- 二零二四年度品牌授权与加盟合同
- 2024年糖尿病指南解读
- 青少年预防艾滋病班会
- 国家太空安全
- 仓库年终安全培训
- 二十届三中全会精神知识竞赛试题及答案
- 人教版小学数学六年级上册《百分数》单元作业设计
- 数学核心经验
- 认识医院科教科PPT演示课件
- 天然气管道工程竣工资料样表及使用总说明
- 油井工况分析思路和方法
- 引水工程解析
评论
0/150
提交评论