数字图像处理 图像分割_第1页
数字图像处理 图像分割_第2页
数字图像处理 图像分割_第3页
数字图像处理 图像分割_第4页
数字图像处理 图像分割_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字图像处理

(DigitalImageProcessing)图像分割Imagesegmentationdividesanimageintoregionsthatareconnectedandhavesomesimilaritywithintheregionandsomedifferencebetweenadjacentregions.

Thegoalisusuallytofindindividualobjectsinanimage.Forthemostparttherearefundamentallytwokindsofapproachestosegmentation:discontinuityandsimilarity.Similaritymaybeduetopixelintensity,colorortexture.Differencesaresuddenchanges(discontinuities)inanyofthese,butespeciallysuddenchangesinintensityalongaboundaryline,whichiscalledanedge.ConceptsandApproachesWhatisImageSegmentation?ImageSegmentationMethodsThresholdingBoundary-basedRegion-based:regiongrowing,splittingandmergingConceptsandApproachesPartitionanimageintoregions,eachassociatedwithanobjectbutwhatdefinesanobject?Howtodefinethesimilaritybetweenregions?FromProf.XinLiAssumption:therangeofintensitylevelscoveredbyobjectsofinterestisdifferentfromthebackground.ThresholdingMethodThresholdingMethodthresholdinghistogramsinglethresholdmultiplethresholdsFrom[Gonzalez&Woods]GlobalThresholdingThresholdingMethod:BasicGlobalThresholding选取一个全局阈值T的初始估计用T分割图像为两部分:G1和G2计算区域G1和G2中的灰度均值m1和m2计算新的阈值:T=0.5(m1+m2)重复步骤2-4,直至T值收敛全局阈值估计基本算法GlobalThresholdingThresholdingMethod:BasicGlobalThresholdingThismethodtreatspixelvaluesasprobabilitydensityfunctions.Thegoalofthismethodistominimizetheprobabilityofmisclassifyingpixelsaseitherobjectorbackground.Therearetwokindsoferror:mislabelinganobjectpixelasbackground,andmislabelingabackgroundpixelasobject.OptimalGlobalThresholding计算图像归一化直方图,pi(i=0,1,2,…,L-1)计算累积直方图P1,令P2=1-P1计算累积灰度均值m1和m2计算全局灰度mG计算类间方差var(k)取使得var(k)最大的k值,即为Otsu阈值k*Otsu最佳全局阈值估计算法Otsu’sThresholdingThresholdingTheRoleofIlluminationThresholdingTheRoleofNoiseThresholdingTheRoleofNoise---DenosingThresholdingMethod:BasicGlobalThresholdingGlobalThresholding:WhendoesItNOTWork?AmeaningfulglobalthresholdmaynotexistImage-dependentglobalthresholdingBasicAdaptiveThresholdingBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundaryBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundarySplitSolutionSpatiallyadaptivethresholdingLocalizedprocessingBasicAdaptiveThresholdingThresholdingT=4ThresholdingT=7ThresholdingT=4ThresholdingT=7spatiallyadaptivethresholdselectionBasicAdaptiveThresholdingmergemergemergemergemergelocalsegmentationresultsBasicAdaptiveThresholdingAdaptiveThresholdingMultipleThresholdsColorimagesegmentationandclusteringColorimagesegmentationandclusteringRegion-BasedMethod:RegionGrowingFrom[Gonzalez&Woods]Key:similaritymeasureRegionGrowingStartfromaseed,andletitgrow(includesimilarneighborhood)Region-BasedMethod:SplitandMergeSplitandMergeIterativelysplit(non-similarregion)andmerge(similarregions)Example:quadtreeapproachFrom[Gonzalez&Woods]Region-BasedMethod:SplitandMergeoriginalimage4regions4regions(nothingtomerge)splitmergeExample:QuadtreeSplitandMergeProcedureIteration1SplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration113regions4regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration2SplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration210regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration3finalsegmentationresult2regionsSplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergeHardProblem:TexturesSimilaritymeasuremakesthedifferenceFromProf.XinLiedgedetectionboundarydetectionclassificationandlabelingimagesegmentationBoundary-BasedMethodDetectionofDiscontinuitiesTherearethreekindsofdiscontinuitiesofintensity:points,linesandedges.Themostcommonwaytolookfordiscontinuitiesistoscanasmallmaskovertheimage.Themaskdetermineswhichkindofdiscontinuitytolookfor.

PointDetection点检测(拉普拉斯)模板LineDetectionOnlyslightlymorecommonthanpointdetectionistofindaonepixelwidelineinanimage.Fordigitalimagestheonlythreepointstraightlinesareonlyhorizontal,vertical,ordiagonal(+or–45

).LineDetectionEdgeDetectionEdgeDetectionEdgeDetectionEdgeDetection:GradientOperatorsFirst-orderderivatives:Thegradientofanimagef(x,y)atlocation(x,y)isdefinedasthevector:Themagnitudeofthisvector:Thedirectionofthisvector:EdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsRobertscross-gradientoperatorsPrewittoperatorsSobeloperatorsGradientOperators:ExampleGradientOperators:ExampleGradientOperators:ExampleEdgeDetection:GradientOperatorsSecond-orderderivatives:(TheLaplacian)TheLaplacianofan2Dfunctionf(x,y)isdefinedasTwoformsinpractice:EdgeDetection:Marr-HildrethEdgeDetectorConsiderthefunction:TheLaplacianofhisTheLaplacianofaGaussiansometimesiscalledtheMexicanhatfunction.Italsocanbecomputedby

smoothingtheimagewiththeGaussiansmoothingmask,followedbyapplicationoftheLaplacianmask.TheLaplacianofaGaussian(LoG)AGaussianfunctionEdgeDetection:Marr-HildrethEdgeDetectorEdgeDetection:Marr-HildrethEdgeDetectorZerocrossingofthesecondderivativeofafunctionindicatesthepresenceofamaximaEdgeDetection:Marr-HildrethEdgeDetectorStepsSmooththeimageusingGaussianfilterEnhancetheedgesusingLaplacianoperatorZerocrossingsdenotetheedgelocationUselinearinterpolationtodeterminethesub-pixellocationoftheedgeMarr-HildrethEdgeDetector:ExampleZeroCrossingsDetectionEdgeImageZeroCrossingsMarr-HildrethEdgeDetector:ExampleSobelgradientLaplacianmaskGaussiansmoothfunctionMarr-HildrethEdgeDetector:ExampleEdgeDetection:CannyEdgeDetectorOptimaledgedetectordependingonLowerrorrate–edgesshouldnotbemissedandtheremustnotbespuriousresponsesLocalization–distancebetweenpointsmarkedbythedetectorandtheactualcenteroftheedgeshouldbeminimumResponse–OnlyoneresponsetoasingleedgeOnedimensionalformulationAssumethat2DimageshaveconstantcrosssectioninsomedirectionEdgeDetection:CannyEdgeDetectorDependingontheaboveprinciples,severaloptimaledgedetectorsarecalculatedBestapproximationtotheabovedetectorsistheFirstDerivativeofGaussianItischosenbecauseoftheeaseofcomputationin2dimensionsImplementationofCannyEdgeDetectorStep1Noiseisfilteredout–usuallyaGaussianfilterisusedWidthischosencarefullyStep2EdgestrengthisfoundoutbytakingthegradientoftheimageARobertsmaskoraSobelmaskcanbeusedImplementationofCannyEdgeDetectorStep3FindtheedgedirectionStep4ResolveedgedirectionImplementationofCannyEdgeDetectorStep5Non-maximasuppression–tracealongtheedgedirectionandsuppressanypixelvaluenotconsideredtobeanedge.GivesathinlineforedgeStep6Usedouble/hysterisisthresholdingtoeliminatestreakingCannyEdgeDetectorWewishtomarkpointsalongthecurvewherethemagnitudeisbiggest.Wecandothisbylookingforamaximumalongaslicenormaltothecurve(non-maximumsuppression).Thesepointsshouldformacurve.Therearethentwoalgorithmicissues:atwhichpointisthemaximum,andwhereisthenextone?Non-MaximumSuppressionNon-MaximumSuppressionSuppressthepixelsin‘GradientMagnitudeImage’whicharenotlocalmaximumNon-MaximumSuppressionNon-MaximumSuppressionHysteresisThresholdingHysteresisThresholdingIfthegradientatapixelisabove‘High’,declareitan‘edgepixel’Ifthegradientatapixelisbelow‘Low’,declareita‘non-edge-pixel’Ifthegradientatapixelisbetween‘Low’and‘High’thendeclareitan‘edgepixel’ifandonlyifitisconnectedtoan‘edgepixel’directlyorviapixelsbetween‘Low’and‘High’HysteresisThresholdingCannyEdgeDetector:ExampleCannySobelEdgeDetection:CannyAlgorithmEdgeLinkingandBoundaryDetection:LocalProcessingTwopropertiesofedgepointsareusefulforedgelinking:thestrength(ormagnitude)ofthedetectededgepointstheirdirections(determinedfromgradientdirections)Thisisusuallydoneinlocalneighborhoods.Adjacentedgepointswithsimilar

magnitudeanddirectionarelinked.Forexample,anedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilartothepixelat(x,y)ifEdgeLinkingandBoundaryDetection:LocalProcessingInthisexample,wecanfindthelicenseplatecandidateafteredgelinkingprocess.HoughTransformMethodtoisolatetheshapesfromanimagePerformedafteredgedetectionNotaffectedbynoiseorgapsintheedgesTechniqueThresholdingisusedtoisolatepixelswithstrongedgegradientParametricequationofstraightlineisusedtomaptheedgepointstotheHoughparameterspacePointsofintersectionintheHoughparameterspacegivestheequationoflineonactualimageEdgeLinkingandB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论