




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.已知,,…,均为正数,且满足,,则,的大小关系是()A. B. C. D.2.已知,,是数轴上三点,点是线段的中点,点,对应的实数分别为和,则点对应的实数是()A. B. C. D.3.下列命题是真命题的有()个①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行;④过一点有且只有一条直线与已知直线平行;⑤无理数都是无限小数.A.2 B.3 C.4 D.54.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为()A.5 B.6 C.7 D.85.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为.以下四个数中是“水仙花数”的是()A.135 B.220 C.345 D.4076.已知n是正整数,并且n-1<<n,则n的值为()A.7 B.8 C.9 D.107.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n8.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.109.下列说法中,正确的个数是().()的立方根是;()的算术平方根是;()的立方根为;()是的平方根.A. B. C. D.10.按如图所示的运算程序,能使输出y值为1的是()A. B. C. D.二、填空题11.若(a﹣1)2与互为相反数,则a2018+b2019=_____.12.已知an=(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出表达式bn=________(用含n的代数式表示).13.对于正整数n,定义其中表示n的首位数字、末位数字的平方和.例如:,.规定,.例如:,.按此定义_____.14.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.15.观察等式:,,,,……猜想______.16.若[x]表示不超过x的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③x=﹣2.75是方程4x﹣[x]+5=0的一个解;④当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2.其中正确的结论有___(写出所有正确结论的序号).17.定义:如果将一个正整数写在每一个正整数的右边,所得到的新的正整数能被整除,则这个正整数称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为,将这个数写在正整数的右边,得到的新的正整数可表示为,请你找出所有的两位数中的“魔术数”是_____________.18.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____.19.已知M是满足不等式的所有整数的和,N是的整数部分,则的平方根为__________.20.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.三、解答题21.规定:求若千个相同的有理数(均不等于)的除法运算叫做除方,如等,类比有理数的乘方,我们把记作,读作“的圈次方”,记作,读作“的圈次方”,一般地,把记作,读作“”的圈次方.(初步探究)(1)直接写出计算结果:;;(2)关于除方,下列说法错误的是()A.任何非零数的圈次方都等于B.对于任何正整数C.D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试:,依照前面的算式,将,的运算结果直接写成幂的形式是,;(4)想一想:将一个非零有理数的圆次方写成幂的形式是:;(5)算一算:.22.对于有理数、,定义了一种新运算“※”为:如:,.(1)计算:①______;②______;(2)若是关于的一元一次方程,且方程的解为,求的值;(3)若,,且,求的值.23.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性.24.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,________,________,________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?25.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.26.阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+…+22017,将等式两边同时乘以2得:2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1请你仿照此法计算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n为正整数);(3)1+2×2+3×22+4×23+…+9×28+10×29.27.请观察下列等式,找出规律并回答以下问题.,,,,……(1)按照这个规律写下去,第5个等式是:______;第n个等式是:______.(2)①计算:.②若a为最小的正整数,,求:.28.规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:=___________=___________(2)用含n的式子表示第n个等式:=___________=___________(n为正整数)(3)求29.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n为非负数时,若,则<x>=n.例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x的取值范围是________________.(2)若关于x的不等式组的整数解恰有4个,求<m>的值;(3)求满足的所有非负实数x的值.30.观察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设,,然后求出MN的值,再与0进行比较即可.【详解】解:根据题意,设,,∴,∴;;∴==;∴;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.D解析:D【分析】由为中点,得到,求出的长,即为的长,从而确定出对应的实数即可.【详解】解:如图:根据题意得:,则点对应的实数是,故选:D.【点睛】此题考查了实数与数轴,弄清数轴上两点间的距离表示方法是解本题的关键.3.B解析:B【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可.【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题;②两条直线被第三条直线所截,同位角不一定相等,故②是假命题;③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题;④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题;⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题.故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.4.A解析:A【分析】根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.故选:A【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.5.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数”.【详解】解:∵,∴A不是“水仙花数”;∵,∴B不是“水仙花数”;∵,∴C不是“水仙花数”;∵,∴D是“水仙花数”;故选D.【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.6.C解析:C【分析】根据实数的大小关系比较,得到5<<6,从而得到3+的范围,就可以求出n的值.【详解】解:∵<<,即5<<6,∴8<3+<9,∴n=9.故选:C.【点睛】本题考查实数的大小关系,解题的关键是能够确定的范围.7.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.9.C解析:C【详解】根据立方根的意义,可知,故()对;根据算术平方根的性质,可知的算术平方根是,故()错;根据立方根的意义,可知的立方根是,故()对;根据平方根的意义,可知是的平方根.故()对;故选C.10.D解析:D【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m-1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.二、填空题11.0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)2+=0,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,解析:0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)2+=0,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,则a2018+b2019=12018+(﹣1)2019=1+(﹣1)=0,故答案为:0.【点睛】本题考查了相反数的性质和算术平方根非负性的性质,正确运用算术平方根非负性的性质是解答本题的关键.12..【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an)=.“点睛”本题解析:.【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an)=.“点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b值时要先算出a的值,要注意a中n的取值.13.145【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解.【详解】解:F1(4)=16,F2(4)=F(16)=37,F3(4解析:145【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解.【详解】解:F1(4)=16,F2(4)=F(16)=37,F3(4)=F(37)=58,F4(4)=F(58)=89,F5(4)=F(89)=145,F6(4)=F(145)=26,F7(4)=F(26)=40,F8(4)=F(40)=16,……通过计算发现,F1(4)=F8(4),∴,∴;故答案为:145.【点睛】本题考查了有理数的乘方,新定义运算,能准确理解定义,多计算一些数字,进而确定循环规律是解题关键.14.6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321-
1234=
3087,8730-378=
8352
,8532一2358=
617解析:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321-
1234=
3087,8730-378=
8352
,8532一2358=
6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467=
6174)
这个在数学上被称之为卡普耶卡(Kaprekar)猜想.【详解】任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234,4321-1234
=3087,8730
-378
=
8352,8532-2358=
6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想,故答案为:6174.【点睛】此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键.15.【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n个奇数的和:1+3+5+7+…+(2n-1)=n2;
∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.17.10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为,则,∴为整数,∵n为整数,∴为整数,∴的可能值为:10、20、25、50;故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.18.3;.【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3;.【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20..【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3-3-++解析:.【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3-3-++3=-3-++3.故答案为:.【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.三、解答题21.(1),;(2)C;(3),;(4);(5)-5.【分析】概念学习:(1)分别按公式进行计算即可;(2)根据定义依次判定即可;深入思考:(3)由幂的乘方和除方的定义进行变形,即可得到答案;(4)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a,第二个数及后面的数变为,则;(5)将第二问的规律代入计算,注意运算顺序.【详解】解:(1);;故答案为:,;(2)A、任何非零数的圈2次方都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;
所以选项B正确;C、,,则;故选项C错误;D、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D正确;故选:;(3)根据题意,,由上述可知:;(4)根据题意,由(3)可知,;故答案为:(5).【点睛】本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.22.(1)①5;②;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据,讨论3和的两种大小关系,进行计算;(3)先判定A、B的大小关系,再进行求解.【详解】(1)根据题意:∵,∴,∵,∴.(2)∵,∴,①若,则,解得,②若,则,解得(不符合题意),∴.(3)∵,∴,∴,得,∴.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.23.(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:.【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,.(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和.(3)设,由(2)的结论可以得到:,,,根据三位数的特点,可知必然有:,,故答案是:.【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.24.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵125,343,729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵125,343,729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.25.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.26.(1)210-1;(2);(3)9×210+1.【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+…+29,将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n+5n+1,将下式减去上式得5S-S=5n+1-1,即S=,即1+5+5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年横积式送料机项目投资价值分析报告
- 语文作文续写课件
- 2025至2030年制动器底板项目投资价值分析报告
- 2025至2030年中密度贴面板项目投资价值分析报告
- 2025至2030年中国系统门窗行业发展战略规划及投资机会预测报告
- 2025至2030年中国氟氢可舒松项目投资可行性研究报告
- 2025至2030年中国智能数显调温电热套项目投资可行性研究报告
- 2025至2030年东莞酒店业前景预测及投资研究报告
- 2025年鲜肉腊肠王项目可行性研究报告
- 2025年钢制上销项目可行性研究报告
- 2023年河南工业和信息化职业学院单招面试题库及答案解析
- 国企治理三会一层详解
- GB/T 6081-2001直齿插齿刀基本型式和尺寸
- GB/T 3717-1983测长机
- GB/T 19189-2011压力容器用调质高强度钢板
- 【农业养殖技术】花鲈淡水池塘标准化养殖技术
- 政治学基础课件全部终稿
- 酒店运营管理课件
- 中国古代建筑理论知识考核试题与答案
- 山东省青岛市各县区乡镇行政村村庄村名居民村民委员会明细
- 绿色建筑评价评分表
评论
0/150
提交评论