版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为(A)5(B)5(C)7(D)82.若在实数范围内有意义,则x的取值范围是(A)X≤3(B)X<3(C)X≥3(D)X>33.下列计算正确的是(A)+=(B)(C)=1(D)=24.下列二次根式中,是最简二次根式的是(A)(B)(C)(D)5.在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=100°,则∠OAB的度数是(A)100°(B)80°(C)50°(D)40°6.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=1,则BC的长等于(A)(B)(C)(D)27.以下各组线段为边,能组成直角三角形的是(A)6cm,12cm,13cm(B)cm,1cm,cm(C)8cm,6cm,9cm(D)1.5cm,2cm,2.5cm8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形(B)对角线互相垂直的矩形(C)对角线互相垂直且相等的四边形(D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形(B)矩形(C)菱形(D)正方形10.如图,四边形ABCD,∠D=∠C=90°,CD=2,点E在边AB,且AD=AE,BE=BC,则AE•BE的值为(A)(B)1(C)(D)如图,正方形ABCD的边长为4,点E对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为(A)1(B)4-(C)(D)-4如图,在菱形ABCD中,∠BAD=120°,点E,F分别在边AB,BC上,将菱形沿EF折叠,点B恰好落在AD边上的点G处,且EG⊥AC,若CD=8,则FG的长为(A)6(B)(C)8(D)填空题(本大题共6小题,每小题3分,共18分)计算:(=__________;=_______________;=___________;计算:=________;=___________;=_________;如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD是菱形.观察下列各式:=2,=,=,…请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是____________.如图,四边形AOBC是正方形,OA=4,动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,另一个点Q从O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时停止运动,当以A、P、B、Q四点为顶点的四边形为平行四边形时,t的值为__________。如图,六个完全相同的小矩形排成一个大矩形,AB是其中一个小矩形的对角线,请在大矩形中完成下列画图,要求①仅用无刻度直尺②保留必要的作图痕迹。(1)在图1中画出与线段AB平行的线段CD(2)在图2中画出过点A与线段AB垂直的线段AE(3)在图3中画出线段AB的垂直平分线MN解答题(本大题共7小题,共46分,解答应写出文字说明,演算步骤或推理过程)(本小题6分)计算:(1)(2)(本小题6分)如图,四边形ABCD是矩形纸片,AD=10,CD=8,在CD边上取一点E,将纸片沿AE折叠,使点D落在BC边上的F处AF的长=_________;(2)BF的长=____________(3)CF的长=________求DE的长。(本小题6分)嘉嘉参加机器人设计活动,需操控机器人在5×5的棋盘格上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R2,其行经位置如图与表所示:路径编号图例行径位置第一条路径R1_A→C→D→B第二条路径R2…A→E→D→F→B第三条路径R3▂A→G→B已知A,B,C,D,E,F,G七点皆落在格线的交点上,且两点之间的路径皆为线段.分别计算出三条路径的长;最长的路径是______(写出编号)最短的路径是_______(写出编号)(本小题6分)已知:点D,E分别是△ABC的BC,AC边的中点。(1)如图①,若AB=10,求DE的长;(2)如图②,点F是AB边上的一点,FG//AD,交ED的延长线于点G.求证:AF=DG(本小题6分)如图,在ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF求证:四边形AECF是菱形(本小题6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF求证:四边形ACDF是平行四边形当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由。(本小题8分)(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,那么EG与图中两条线段的和相等?证明你的结论。(2)请用(1)中所积累的经验和知识完成此题,如图2,在四边形ABCD中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?2018-2019和平区八年级(下)期中数学试卷答案一.选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.B2.C3.D4.C5.D6.B7.D8.C9.A10.B11.B12.B二.填空题(本大题共6小题,每小题3分,共18分)13.5,,1414.,,15.AB=BC或ACꓕBD或∠ABC=90°(答案不唯一)16.17.18.三.解答题(本大题共7小题,共46分,解答应写出文字说明,演算步骤或推理过程)(本小题6分)计算:(1)(2)===15÷=15=(本小题6分)10;(2)6;(3)4;∵折叠∵折叠△AFE≌△ADE∴EF=DE设DE=x,则EF=x∵CD=8∴CE=CD-DE=8-x在Rt△ECF中,∠C=90°,由勾股定理得:CE2+CF2=EF2∵CE=4∴(8-x)2+42=x2解得:x=5∴DE的长等于5(4)第22题(1)解:路径R1的长等于=第22题路径R2的长等于=路径R3的长等于=(2)最长的路径是__R2____(写出编号)最短的路径是__R3_____(写出编号)(1)∵(1)∵D,E分别为BC,AC边的中点∴DE是△ABC的中位线∴DE//AB,DE=AB∵AB=10∴DE=5(2)(2)∵F是AB边上的一点∵由(1)知AB//DE∴AF//DE∵FG//AD∴四边形AFGD为平行四边形∴AF=DG证明:证明:∵四边形ABCD是平行四边形∴AD//BC,AD=BC∵E,F分别为AD,BC上的点∴AE//CF∵DE=BF∵AE=AD-DE,FC=BC-BF∴AE=CF∴四边形AFCE为平行四边形∵ACꓕEF∴四边形AFCE为菱形第23题23.第23题24.(2)∵24.(2)∵矩形ABCD∴∠BCD=∠ABC=90°,AB=CD∵CF平分∠BCD∴∠BCF=∠BCD=45°∴∠BFC=180°-∠ABC-∠BCF=180°-90°-45°=45°∴∠BFC==∠BFC∴BF=BC∵BF=AB+AF=2CD∴BC=2CD(1)∵矩形ABCD∴AB//CD∴AF//CD∴∠AFE=∠DCD∵∠AEF=∠DEC∵E是AD的中点∴AE=DE∴△AEF≌△DEC∴AF=CD∴四边形ACDF为平行四边形第24题第24题(1)解:EG=BE+DE如图(1)延长AD在AD上截取DF=BE,连接CF(1)解:EG=BE+DE如图(1)延长AD在AD上截取DF=BE,连接CF∵正方形ABCD∴BC=DC,∠ABC=∠ADC=∠BCD=90°∵∠CDF=180°-∠ADC∴∠CDF=90°∴∠ABC=∠CDF∵BE=DF∴△EBC≌△FDC∴∠BCE=∠DCF,EC=FC∵∠ECG=45°∴∠BCE+∠GCD=∠BCD-∠ECG=90°-45°=45°∴∠GCD+∠DCF=∠FCG=45°∴∠ECG=∠FCG∵GC=GC∴△ECG≌△FCG∴EG=GF∵GF=GD+DF=GD+BE∴EG=GD+BE(2)如图2,过C作CD(2)如图2,过C作CD⊥AG,交AG延长线于D,在直角梯形ABCG中,∵AD∥BC,∴∠A=∠B=90°,又∠CDA=90°,AB=BC,∴四边形ABCD为正方形∵AB=BC=12∴AD=BC=12,∵BE=4∴AE=AB-BE=8设EG=x由(1)知EG=BE+GD∴GD=x-4∴AG=AD-GD=12-(x-4)=16-x在Rt△AEG中,∵GE2=AG2+AE2,即x2=(16-x)2+82,解这个方程,得:x=10,∴EG=10八年级下册数学期中考试题(答案)一、选择题(本大题共6小题,每小题3分,共18分)1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2 B.< C.﹣2a<﹣2b D.﹣a>﹣b2.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6 B.﹣6 C.3 D.﹣3.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0) C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800 B.90x+210(15﹣x)≤1800 C.210x+90(15﹣x)≥1.8 D.90x+210(15﹣x)≤1.85.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 6.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0) B.(72,0) C.(67,) D.(79,)二、填空题(本大题共6小题,每小题3分,共18分)7.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.8.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.9.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是.10.若关于x的不等式的整数解共有4个,则m的取值范围是.11.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.12.已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.三、(本大题共5小题,每小题6分,共30分)13.(6分)解下列不等式(组):(1)(2),并把它的解集表示在数轴上.14.(6分)如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.15.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B216.(6分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?17.(6分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.四、(本大题共3小题,每小题8分,共24分)18.(8分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?19.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.22.(9分)为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.六、(本大题共12分)23.(12分)几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.
2018-2019学年江西省吉安市青原区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【分析】A、根据不等式的性质1,可得答案;B、根据不等式的性质2,可得答案;C、根据不等式的性质3,可得答案;D、根据不等式的性质3,可得答案.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都乘以﹣1,不等号的方向改变,故D错误;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“2.【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b.【解答】解:不等式组,解得,,即,2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,,得,a=1,b=﹣2;∴(a+1)(b﹣1)=2×(﹣3)=﹣6.故选:B.【点评】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.4.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:由题意可得210x+90(15﹣x)≥1800,故选:A.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.5.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得SABC=SABP+SACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.6.【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【解答】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(﹣3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5…1∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A.【点评】本题考查规律性:点的坐标,解题的关键是可以发现其中的规律,利用发现的规律找出所求问题需要的条件.二、填空题(本大题共6小题,每小题3分,共18分)7.【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.8.【分析】根据平移的性质即可得到结论.【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.9.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.10.【分析】关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.【解答】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.【点评】本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.11.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.12.【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三、(本大题共5小题,每小题6分,共30分)13.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3(x﹣2)≥2(7﹣x),去括号,得:3x﹣6≥14﹣2x,移项,得:3x+2x≥14+6,合并同类项,得:5x≥20,系数化为1,得:x≥4;(2)解不等式﹣x+3<2x,得:x>1,解不等式﹣≥0,得:x≤4,则不等式组的解集为1<x≤4,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式(组),正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键.14.【分析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.【解答】(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.【点评】本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.15.【分析】(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.【解答】解:(1)如图所示:△A1B1C1A1,B1的坐标分别为(﹣1,2),(3,2),故答案为:(﹣1,2),(3,2),(2)如图所示:△A2B2C2【点评】本题主要考查作图﹣轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.16.【分析】(1)根据总价=单价×数量就可以表示出y与x之间的函数关系式;(2)根据(1)的解析式建立不等式求出其解即可.【解答】解:(1)由题意,得y=2x+8(x>0)(2)由题意,得2x+8≤20,解得:x≤6,∴x最多=6∴每月的用水量最多为14m【点评】本题考查了总价=单价×数量的运用,一次函数的解析式的运用及列不等式解实际问题的运用,解答时求出一次函数的解析式是关键.17.【分析】由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.【解答】证明:∵Rt△ACD中,CE⊥AD,∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,∴∠F=∠ADC,在△ACD和△CBF中,,∴△ACD≌△CBF(AAS),∴CD=BF,∵D为BC中点,∴CD=BD,∴BF=CD=BD=BC=AC,则AC=2BF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.四、(本大题共3小题,每小题8分,共24分)18.【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】(1)先根据三角形内角和计算出∠BAC=150°,然后利用旋转的定义可判断旋转中心为点A,旋转角为150°;(2)根据旋转的性质得到∠DAE=∠BAC=150°,AB=AD=4,AC=AE,利用周角定义可得到∠BAE=60°,然后利用点C为AD中点得到AC=AD=2,于是得到AE=2.【解答】解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.五、(本大题共2小题,每小题9分,共18分)21.【分析】(1)根据线段垂直平分线的判定定理得到直线AD是BC的垂直平分线,证明结论;(2)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据平行线的性质得到∠BAD=∠CAD,等量代换得到∠BAD=∠EDA,根据等腰三角形的判定定理证明;(3)仿照(2)的证明方法解答.【解答】(1)证明:∵AB=AC,DB=DC,∴直线AD是BC的垂直平分线,∴AD垂直BC;(2)证明:在△ABD和△ACD中,,∴△ABD≌△ACD,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE,∵AB=AC,∴DE=AB+BE=AC+BE.【点评】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.【分析】(1)由“已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”,即可得出关于a、b的二元一次方程组,解之即可得出结论;(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据总价=单价×数量结合厂里预算购买污水处理设备的资金不超过105万元,即可得出关于m的一元一次不等式,解之取其中的整数即可得出各购买方案;(3)由每月要求处理污水量不低于2040吨,来验证m的值,再利用总价=单价×数量找出最省钱的购买方案.【解答】解:(1)根据题意得:,解得:.答:a的值为12,b的值为10.(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据题意得:12m+10(10﹣m)≤解得:m≤,∴m可取的值为0,1,2.故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台.(3)当m=0时,每月的污水处理量为:200×10=2000(吨),∵2000<2040,∴m=0不合题意,舍去;当m=1时,每月的污水处理量为:240+200×9=2040(吨),∵2040=2040,∴m=1符合题意,此时购买设备所需资金为:12+10×9=102(万元);当m=2时,每月的污水处理量为:240×2+200×8=2080(吨),∵2080>2040,∴m=2符合题意,此时购买设备所需资金为:12×2+10×8=104(万元).∵102<104,∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)由每月要求处理污水量来确定m可取的值.六、(本大题共12分)23.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.人教版八年级(下)期中模拟数学试卷【答案】一、选择题(本大题共10小题,每小题4分,满分40分)1.在下列代数式中,不是二次根式的是()A. B. C. D.2.下列计算正确的是()A.2+3=5 B.÷=2 C.5×5=5 D.=23.下列性质中,平行四边形不一定具备的是()A.对边相等 B.对角相等 C.对角线互相平分 D.是轴对称图形4.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B. C. D.5.观察下列数:,2,,2……则第9个数是()A.3 B. C.2 D.36.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BC B.OA=OC C.AB=CD D.∠ABC+∠BCD=180°7.在一块矩形地上被踩出两条宽1m(过A,B间任意一点作AD的平行线,被每条小路截得的线段的长度是1m)的小路,如图,小路①的面积记作S1,小路②的面积记作S2,则S1与SA.S1=S2 B.S1>S2 C.S1<S2 8.甲、乙两位同学对代数式(a>0,b>0),分别作了如下变形:甲:==﹣乙:==﹣关于这两种变形过程的说法正确的是()A.甲、乙都正确 B.甲、乙都不正确 C.只有甲正确 D.只有乙正确9.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?()A.0.4 B.0.6 C.0.7 10.如图,已知正方形ABCD的边长为4,以AB为一边作等边△ABE,使点E落在正方形ABCD的内部,连接AC交BE于点F,连接CE、DE,则下列说法中:①△ADE≌△BCE;②∠ACE=30°;③AF=CF;④=2+,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题5分.满分20分)11.(5分)写一个大于﹣2小于﹣1的无理数.12.(5分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.13.(5分)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……如此操作下去,则第6个三角形的直角顶点坐标为.14.(5分)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△解:由a4+b2c2=b4+a2ca4﹣b4=a2c2﹣b2c(a2+b2)(a2﹣b2)=c2(a2﹣b2)②即a2+b2=c2③∴△ABC为Rt△.④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号)错误原因是本题的结论应为.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在菱形ABCD中,∠DAB与∠ABC的度数比为1:2,周长是48cm.求:AC和BD18.(8分)上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,求海岛B与灯塔C之间的距离.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.20.(10分)小欣与同学以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小欣想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,小欣借助此图求出△ABC的面积.(1)在图1中,小欣所画的△ABC的三边长分别是AB=,BC=,AC=,△ABC的面积为.(2)已知在△ABC中,AB=,BC=2,请你根据小欣的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.六、(本题满分12分)21.(12分)(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.七、(本题满分12分)22.(12分)有一块直角三角形的绿地,量得两直角边BC、AC分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以八、(本题满分14分)23.(14分)(1)如图1,已知在矩形ABCD中,点E是BC的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,证明:CH=EF+EG;(2)如图2,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF,EG,BD之间具有怎样的数量关系,直接写出你的猜想;(3)观察图1,图2的特性,请你根据这一特性构造一个图形,并满足(1)或(2)的结论,写出相关题设的条件和结论.
2017-2018学年安徽省芜湖市繁昌县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、,是二次根式,故此选项错误;B、,是二次根式,故此选项错误;C、,是二次根式,故此选项错误;D、,不是二次根式,故此选项正确;故选:D.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.2.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、2与3不能合并,所以A选项错误;B、原式==2,所以B选项正确;C、原式=25=25,所以C选项错误;D、原式==,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.【分析】根据平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分,可得A、B、C正确.平行四边形是中心对称图形不是轴对称图形,所以D错误.【解答】解:平行四边形的对边相等,对角相等,对角线互相平分,可得A、B、C正确.平行四边形是中心对称图形不是轴对称图形,所以D错误.故选:D.【点评】此题考查了平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分,平行四边形是中心对称图形.4.【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.5.【分析】把二次根式变形后,分析被开方数的特点,发现满足规律.【解答】解:观察二次根式的特点,被开方数满足,∴第9个数是==3.故选:D.【点评】本题考查了算术平方根的被开方数的变化规律,把二次根式适当变形是解决此题的关键.6.【分析】根据平行四边形的判定可判断A;根据平行四边形的判定定理判断B即可;根据等腰梯形的等腰可以判断C;根据平行线的判定可判断D.【解答】解:∵∠DAC=∠ACB,∴AD∥BC,A、根据平行四边形的判定有一组对边平行且相等的四边形是平行四边形,不符合题意;B、可利用对角线互相平分的四边形是平行四边形判断平行四边形,不符合题意;C、可能是等腰梯形,故本选项错误,符合题意;D、根据AD∥BC和∠ABC+∠BAD=180°,能推出符合判断平行四边形的条件,不符合题意.故选:C.【点评】本题主要考查对平行四边形的判定,等腰梯形的性质,平行线的判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.7.【分析】根据题意可知,小路①、②的面积都相当于长为AB、宽为1米的长方形的面积.【解答】解:∵过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是1米,∴S1=1×AB;S2=1×AB,∴S1=S2.故选:A.【点评】本题考查了平行四边形的性质,解题的关键是将不规则图形转化为规则图形.8.【分析】利用分子,分母同时乘以有理化因式或分子化为含有分母的乘积形式求解.【解答】解:甲同学的解答只有在a≠b的情况下才成立,∴只有乙同学的解答过程正确.故选:D.【点评】本题主要考查了分母有理化,解题的关键是正确找出有理化因式或把分子化为含有分母的乘积形式.9.【分析】首先在直角三角形ABC中计算出CB长,再由题意可得EC长,再次在直角三角形EDC中计算出DC长,从而可得AD的长度.【解答】解:∵AB=2.5米,AC=0.7米,∴BC==2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2米,∴DC==1.5米.∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选:D.【点评】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.10.【分析】根据正方形的性质,全等三角形的判定,可以证明①②正确,作FH⊥BC于H,设FH=CH=a,则BH=a,利用勾股定理求出a,即可判断③④正确;【解答】解:∵四边形ABCD是正方形,△AEB是等边三角形,∴AD=AE=AB=BE=BC,∠DAB=∠CBA=90°,∠EAB=∠EBA=60°,∴∠DAE=∠EBC=30°,∴△ADE≌△BCE,故①正确,∵∠BEC=∠BCE=(180°﹣30°)=75°,∠ACB=45°,∴∠ACE=∠BCE﹣∠ACB=30°,故②正确,作FH⊥BC于H,设FH=CH=a,则BH=a,∵BC=4,∴a+a=4,∴a=2﹣2,∴CF=a=2﹣2,∵AC=4,∴AF=AC﹣CF=6﹣2,∴AF=CF,故③正确,∵BF=2FH=4﹣4,∴EF=BE﹣BF=8﹣4,∴==2+,故④正确,故选:D.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理,等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题(本大题共4小题,每小题5分.满分20分)11.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:写一个大于﹣2小于﹣1的无理数﹣,故答案为:﹣.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.12.【分析】在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD﹣CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【解答】解:在Rt△ABD中,BD==9;在Rt△ACD中,CD==5,∴BC=BD+CD=14或BC=BD﹣CD=4,∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=32.故答案为:32或42.【点评】本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.13.【分析】根据等腰直角三角形的性质分别求出第1个到第6个三角形的直角顶点坐标即可.【解答】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(﹣,);第4个三角形的直角顶点坐标:(﹣,);第5个三角形的直角顶点坐标:(﹣,);第6个三角形的直角顶点坐标:(﹣,);故答案为:(﹣,).【点评】本题考查的是三角形的中位线定理、等腰直角三角形的性质,解题的关键是理解题意,灵活运用三角形中位线定理.14.【分析】由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP时去分析求解即可求得答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6,OD=BD=×16=8,∴在Rt△AOD中,AD==10,∵E为AD中点,∴OE=AD=×10=5,①当OP=OE时,P点坐标(﹣5,0)和(5,0);②当OE=PE时,此时点P与D点重合,即P点坐标为(8,0);③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=OA=3,∴OK==4,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:5=:4,解得:OP=,∴P点坐标为(,0).∴其余所有符合这个条件的P点坐标为:(8,0)或(,0).故答案为:(8,0)或(,0).【点评】此题考查了菱形的性质、勾股定理、直角三角形的性质以及等腰三角形的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.三、解答题(本大题共2小题,每小题8分,满分16分)15.【分析】先进行二次根式的乘法运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣+=+3.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.【分析】由于②到③时等式两边都除以了a2﹣b2,如果a2﹣b2=0,根据等式的性质可知,此时不一定有③成立.【解答】解:由a4+b2c2=b4+a2ca4﹣b4=a2c2﹣b2c(a2+b2)(a2﹣b2)=c2(a2﹣b2),∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)(a2+b2﹣c2)=0,∴(a2﹣b2)=0或a2+b2﹣c2=0,∴△ABC为等腰三角形或直角三角形.【点评】本题主要考查了等式的性质以及等腰三角形、直角三角形的判定.等式的性质:等式的两边乘以或除以同一个不等于0的数,所得结果仍是等式.四、(本大题共2小题,每小题8分,满分16分)17.【分析】首先根据菱形的性质可得菱形的边长为48÷4=12cm,然后再证明△ABD是等边三角形,进而得到BD=AB=12cm,然后再根据勾股定理得出AO的长,进而可得【解答】解:菱形ABCD的周长为48cm∴菱形的边长为48÷4=12∵∠DAB与∠ABC的度数比为1:2,∠ABC+∠BAD=180°(菱形的邻角互补),∴∠ABC=120°,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=12cm∵菱形ABCD对角线AC、BD相交于点O,∴AO=CO,BO=DO且AC⊥BD,∴AO==6(cm),∴AC=12(cm).【点评】此题主要考查了菱形的性质,以及菱形的周长计算,关键是掌握菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.18.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC==60海里,∴BC==30(海里)答:海岛B与灯塔C之间的距离是30海里.【点评】考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.五、(本大题共2小题,每小题10分,满分20分)19.【分析】从题中可知:(1)△ABC和△EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE即可证明.(2)根据全等三角形的性质,利用平行四边形的性质求解即可.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD.(2)解:∵AE平分∠DAB,∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°.∵△ABC≌△EAD,∴∠AED=∠BAC=85°.【点评】主要考查了平行四边形的基本性质和全等三角形的判定及性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20.【分析】(1)利用勾股定理求线段的长,利用分割法求三角形面积即可.(2)利用数形结合的思想画出图形即可解决问题.【解答】解:(1)AB==5,BC==,AC==.S△ABC=4×4﹣×3×4﹣×1×4﹣×3×1=.故答案为5,,,(2)△ABC如图所示,S△ABC=6×5﹣×3×1﹣×5×5﹣×2×6=10.【点评】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.六、(本题满分12分)21.【分析】(1)先求出xy与y+x与y﹣x的值,再代入计算即可;(2)先根据完全平方公式求出a2+()2,进一步得到(a+)2,从而得到a+的值.【解答】解:(1)∵x=﹣,y=+,∴xy=1,y+x=2,y﹣x=2,∴﹣====4;(2)∵a﹣=,∴(a﹣)2=21,∴a2+()2=23,(a+)2=25,∴a+=±5.【点评】本题考查的是分母有理化、二次根式的化简求值,熟知二次根式的乘法法则是解答此题的关键.七、(本题满分12分)22.【分析】根据勾股定理求出斜边AB,(1)当AB=AD时,求出CD即可;(2)当AB=BD时,求出CD、AD即可;(3)当DA=DB时,设AD=x,则CD=x﹣6,求出即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=8m,BC=6∴AB=10m(1)如图1,当AB=AD时,CD=6m则△ABD的面积为:BD•AC=×(6+6)×8=48(m2);(2)如图2,当AB=BD时,CD=4m,则△ABD的面积为:BD•AC=×(6+4)×8=40(m2);(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,则x2=(x﹣6)2+82,∴x=,则△ABD的面积为:BD•AC=××8=(m2);答:扩充后等腰三角形绿地的面积是48m2或40m2或【点评】本题主要考查对勾股定理,等腰三角形的性质等知识点的理解和掌握,能通过分类求出等腰三角形的所有情况是解此题的关键.八、(本题满分14分)23.【分析】(1)设AC、BD交于点O,连接OE,由矩形的性质得出OA=OB=OC=OD,由三角形面积公式得出△BCD的面积=2△OBC的面积,由△BCD的面积=BD×CH,△OBC的面积=OB×EF,△OCE的面积=OC×EG,得出OB×CH=OB×EF+OC×EG,即可得出结论;(2)连接BE和AC,交BD于O,由正方形的性质得出AC⊥BD,OA=OB=OC=OD,由三角形面积关系得出S△BCH=S△BCE+S△BHE,证出OC=EG+EF,即可得出结论;(3)点P是等腰三角形底边上的任意一点,点P到两腰的距离的和等于这个等腰三角形腰上的高;很显然过P作PH⊥CG于H,可得矩形PEGH,而且AAS可求证△CHP≌△PFC,得出PF=CH,故PE+PF=CG.【解答】(1)证明:如图1,设AC、BD交于点O,连接OE,∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB=OC=OD,∴△BCD的面积=2△OBC的面积,∵CH⊥BD,EF⊥BD,EG⊥AC,∴△BCD的面积=BD×CH,△OBC的面积=OB×EF,△OCE的面积=OC×EG,∴OB×CH=OB×EF+OC×EG,∴VH=EF+EG;(2)解:EF+EG=BD,理由如下:连接BE和AC,交BD于O,如图2所示:∵四边形ABCD是正方形,∴AC⊥BD,OA=OB=OC=OD,∵EF⊥BD于点F,EG⊥BC于点G,∵S△BCH=S△BCE+S△BHE,∴BH•OC=BC•EG+BH•EF,∴OC=EG+EF,∴EF+EG=BD;(3)解:如图3所示:点P是等腰三角形底边上的任意一点,点P到两腰的距离的和等于这个等腰三角形腰上的高.题设:△ABC中,AB=AC,CG是△ABC的高,点P为底边BC上任意一点,PE⊥AB于E,PF⊥AC于F;结论:PE+PF=CG.理由:作PH⊥CG于H,则四边形PEGH是矩形,∴PE=GH,PH∥AB,∠PHC=∠PHG=90°,∴∠HPC=∠B,∵AB=AB,∴∠B=∠FCP,∴∠HPC=∠FCP,在△CHP和△PFC中,,∴△CHP≌△PFC(AAS),∴CH=PF,∵CG=GH+CH,∴PE+PF=CG.【点评】本题考查了矩形的性质、正方形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形面积的计算等知识;本题综合性强,熟练掌握矩形的性质和正方形的性质是关键.人教版八年级(下)期中模拟数学试卷(答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1 D.x≠12.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3 B.1,2,﹣3 C.1,﹣2,3 D.﹣1,﹣2,33.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=194.(3分)下列是勾股数的一组是()A.1,3,4 B.3,4,5 C.4,5,6 D.5,7,125.(3分)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=26.(3分)下列根式中,不能与合并的是()A. B. C. D.7.(3分)已知,x=,y=,则(x+y)2的值为()A.2 B.4 C.5 D.78.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm9.(3分)若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4 B.2 C.4 D.810.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x+10)=900 B.(x﹣10)=900 C.10(x+10)=900 D.2[x+(x+10)]=90011.(3分)若方程x2﹣3x+2=0较小的根为p,方程3x2﹣2x﹣1=0较大的根为q,则p+q等于()A. B.3 C.2 D.112.(3分)若,,以此类推,则的值为()A.2018 B.2019 C.2020 D.2021二、填空题:(每小題3分.共18分,请将答案直接写在题中的横线上)13.(3分)计算=.14.(3分)已知关于x的方程xk﹣1﹣2x+3=0是一元二次方程,则k=.15.(3分)当k时,关于x的方程x2﹣3x+k=0没有实数根.16.(3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为cm.17.(3分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.18.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为.三、解答题:(本大题共8小题,共计66分;解答题要写出文字说明、演算步骤或证明过程.)19.(10分)计算(1)(2)20.(6分)先化简再求值:,其中x=﹣2.21.(6分)如图,已知在Rt△ABC中,∠C=90°,AC=9,BC=12,求点C到AB的距离.22.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.23.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足x1x2+x1+x2=3,求k的值.24.(8分)如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.25.(10分)如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.26.(10分)2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)
2018-2019学年广西贺州市昭平县八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1 D.x≠1【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.【点评】本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x的不等式,难度适中.2.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3 B.1,2,﹣3 C.1,﹣2,3 D.﹣1,﹣2,3【分析】找出方程的二次项系数,一次项系数,以及常数项即可.【解答】解:方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)下列是勾股数的一组是()A.1,3,4 B.3,4,5 C.4,5,6 D.5,7,12【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵12+32≠42,∴此选项不符合题意;B、∵42+32=52,∴此选项符合题意;C、∵42+52≠62,∴此选项符不合题意;D、∵52+72≠122,∴此选项不符合题意.故选:B.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皇家政府合同体系介绍
- 经销商合作协议书(完整版)
- 2024年度国际海运集装箱装卸承包合同
- 二年级数学(上)计算题专项练习
- 2024年度文化娱乐合同
- 2024年企业综合保险合同
- 2024版电子商务公司股权分配协议
- 2024版游戏开发与委托加工合同
- 二级建造师投标合同范本
- 2024年度租赁合同:包含secretarial支持
- 建筑施工资质挂靠合同范本
- GB/T 42755-2023人工智能面向机器学习的数据标注规程
- 福特蒙迪欧说明书
- 6-市政管网工程基础知识及识图
- 《室内设计》课件-第四章 中世纪时期
- 电气设备点检课件
- 道路运输企业安全风险辨识风险分级管控清单模版
- 颈淋巴结结核的诊断与治疗
- 自来水公司绩效考核管理制度
- 【企业杜邦分析国内外文献综述6000字】
- 职业健康管理13项规章制度
评论
0/150
提交评论