




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2025届辽宁省抚顺县数学九上开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知二次函数的与的部分对应值如下表:
-1
0
1
3
-3
1
3
1
下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个2、(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是()A.(1+x)2=24.2 B.20(1+x)2=24.2C.(1﹣x)2=24.2 D.20(1﹣x)2=24.23、(4分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.4、(4分)若式子有意义,则x的取值范围是()A.x> B.x< C.x≥ D.x≤5、(4分)为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=336、(4分)矩形具有而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等7、(4分)如图,等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是()①OD=OE;②;③;④△BDE的周长最小值为9,A.1个 B.2个 C.3个 D.4个8、(4分)等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012=.10、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.11、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.12、(4分)若,则的值是________13、(4分)一组数据x1,x2,…,xn的平均数是2,方差为1,则3x1,3x2,…,3xn,的方差是_____.三、解答题(本大题共5个小题,共48分)14、(12分)某中学开展“一起阅读,共同成长”课外读书周活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为______人,在扇形统计图中,课外阅读时间为5小时的扇形圆心角度数是______;(2)请你补全条形统计图;(3)若全校八年级共有学生人,估计八年级一周课外阅读时间至少为小时的学生有多少人?15、(8分)计算:(1)(2)()﹣()16、(8分)下面是小东设计的“作矩形”的尺规作图过程,已知:求作:矩形作法:如图,①作线段的垂直平分线角交于点;②连接并延长,在延长线上截取③连接所以四边形即为所求作的矩形根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形:(保留作图痕迹)(2)完成下边的证明:证明:,,四边形是平行四边形()(填推理的依据)四边形是矩形()(填推理的依据)17、(10分)如图,在平行四边形中,,,分别是,的中点,.(1)求证:四边形是菱形;(2)求的长.18、(10分)化简并求值:,其中x=﹣1.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.20、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.21、(4分)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.22、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
23、(4分)已知x=2时,分式的值为零,则k=__________.二、解答题(本大题共3个小题,共30分)24、(8分)某村为绿化村道,计划在村道两旁种植A、B两种树木,需要购买这两种树苗800棵,A、B两种树苗的相关信息如表:树苗单价(元/棵)成活率植树费(元/棵)A10080%20B15090%20设购买A种树苗x棵,绿化村道的总费用为y元,解答下列问题:(1)求出y与x之间的函数关系式.(2)若这批树苗种植后成活了670棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过120000元,则最多可购买B种树苗多少棵?25、(10分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:①∠BEA=∠G,②EF=FG.(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.26、(12分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质2、B【解析】
如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.【详解】解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.3、A【解析】
根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.4、D【解析】
根据二次根式有意义,被开方数大于等于0,列不等式求解即可得.【详解】根据题意,得3-2x≥0,解得:x≤,故选D.本题主要考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.5、C【解析】
根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.6、D【解析】
根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D.本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.7、B【解析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=6+DE=OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】解:连接OB、OC,如图,
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵点O是等边△ABC的内心,
∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°,
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中,,∴△BOD≌△COE(ASA),
∴BD=CE,OD=OE,①正确;
∴S△BOD=S△COE,
∴四边形ODBE的面积=S△OBC=S△ABC=××62=,③错误作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
∴OH=OE,HE=OH=OE,
∴DE=OE,
∴S△ODE=•OE•OE=OE2,
即S△ODE随OE的变化而变化,
而四边形ODBE的面积为定值,
∴S△ODE≠S△BDE;②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
∴△BDE周长的最小值=6+3=9,④正确.
故选B.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质以及三角形面积的计算等知识;熟练掌握旋转的性质和等边三角形的性质,证明三角形全等是解题的关键.8、C【解析】
根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
由作图痕迹发现BD平分∠ABC,
∴∠A=∠ABD=∠DBC=36°,
∴AD=BD,故A、B正确;
∵AD≠CD,
∴S△ABD=S△BCD错误,故C错误;
△BCD的周长=BC+CD+BD=BC+AC=BC+AB,
故D正确.
故选C.本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】令x=0,则;令y=0,则,解得.∴.∴.考点:探索规律题(图形的变化类),一次函数图象上点的坐标特征10、1【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.【详解】∵CA=CB.∠ACB=90°,CD⊥AB,∴AD=DB,∴CD=AB=1,故答案为1.本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.11、【解析】
设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3x,宽为2x,由题意,得:5x+20≤160,解得:x≤28,故行李箱宽度的最大值是28×2=56cm.故答案为:56cm.本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.12、.【解析】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.13、1【解析】
根据x1,x2,x3,…xn的方差是1,可得出3x1,3x2,3x3,…,3xn的方差是1×32即可.【详解】∵数据:x1,x2,x3,…,xn的平均数是2,方差是1,∴数据3x1,3x2,3x3,…,3xn的方差是1×1=1.故答案为:1.本题考查了方差,若在原来数据前乘以同一个数,方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题(本大题共5个小题,共48分)14、(1)50,;(2)见解析;(3)432人.【解析】
(1)由阅读3小时的人数10人与所占的百分比,可求出调查的总人数,乘以样本中阅读5小时的小时所占的百分比即可,(2)分别计算出阅读4小时的男生人和阅读6小时的男生人数,即可补全条形统计图,(3)用样本估计总体,总人数900去乘样本中阅读5小时以上的占比即可.【详解】解:(1)人,故答案为:50,.(2)4小时的人数中的男生:人,6小时的人数中男生:人,条形统计图补全如图所示:(3)人答:八年级一周课外阅读时间至少为5小时的学生大约有432人.考查条形统计图、扇形统计图的制作方法及所反映的数据的特点,两个统计图结合起来,可以求出相应的问题,正确的理解统计图中各个数量之间的关系是解决问题的关键.15、(1)-1;(2)2+3.【解析】
(1)利用积的乘方得到原式,然后根据平方差公式计算;(2)先把二次根式化为最简二次根式,然后去括号合并即可.【详解】(1)=[(+2)(﹣2)]2019=(3﹣4)2019=﹣1;(2)()﹣()=4+2﹣2=2+3.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、(1)见解析;(2)OC,对角线互相平分的四边形是平行四边形;一角为直角的平行四边形是矩形.【解析】
(1)根据要求作出图形即可.(2)根据对角线互相平分得到四边形ABCD是平行四边形,因为∠ABC=90°,且四边形ABCD是平行四边形,则可判定四边形ABCD矩形.【详解】解:(1)如图,矩形ABCD即为所求.(2)∵OA=OC,OD=OB,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,四边形ABCD是矩形(有一个角是直角的平行四边形是矩形)故答案为:OC,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.本题考查作图-复杂作图、平行四边形的判定、矩形的判定等知识,解题的关键是熟练掌握尺规作图、平行四边形的判定、矩形的判定.17、(1)见解析;(2)【解析】
(1)由平行四边形的性质得出AD∥BC,AD=BC,证出DE∥CF,DE=CF,得出四边形CDEF是平行四边形,证出CD=CF,即可得出四边形CDEF是菱形;
(2)连接DF,证明△CDF是等边三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,证出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,
∵E,F分别是AD,BC的中点,
∴DE=AD,CF=BC,
∴DE∥CF,DE=CF,
∴四边形CDEF是平行四边形,
又∵BC=2CD,
∴CD=CF,
∴四边形CDEF是菱形;(2)如图,连接,,,是等边三角形,,,.是的中点,,.,.,.本题考查的是菱形的判定与性质、平行四边形的判定和性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.18、2.【解析】试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣1时,原式=﹣2.一、填空题(本大题共5个小题,每小题4分,共20分)19、k>﹣1且k≠1.【解析】
由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.20、1【解析】
证明是的中位线即可求解.【详解】解:四边形是平行四边形,,是中点,,∴是的中位线,,故答案为:1.本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.21、【解析】
根据众数的概念,确定x的值,再求该组数据的方差.【详解】∵一组数据5,8,10,x,9的众数是8,∴x=8,∴这组数据为5,8,10,8,9,该组数据的平均数为:.∴这组数据的方差本题考查众数与方差,熟练掌握众数的概念,以及方差公式是解题的关键.22、a【解析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.【详解】作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2=CE•FH
∵FH=DF,CE=,
∴整理上式得:2a-x=x,
计算得:x=a.
AF=a-x=a.
故答案为a.本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.23、-6【解析】由题意得:6+k=0,解得:k=-6.故答案:-6.【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.二、解答题(本大题共3个小题,共30分)24、(1)y=—50x+136000;(2)111000元.(3)若绿化村道的总费用不超过120000元,则最多可购买B种树苗1棵.【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;(2)根据这批树苗种植后成活了670棵,列出关于x的一元一次方程,求出x的值,即可求解.(3)根据总费用不超过120000元,列出关于x的一元一次不等式,求解即可.详解:(1)设购买A种树苗x棵,则购买B种树苗(800—x)棵,依题意得:y=(100+20)x+(150+20)×(800—x)=—50x+136000(2)由题意得:80%x+90%(800—x)=670解得:x=500当x=500时,y=—50×500+136000=111000(元).答:若这批树苗种植后成活了670棵,则绿化村道的总费用需要111000元.(3)由(1)知购买A种树苗x棵,购买B种树苗(800—x)棵时,总费用y=—50x+136000,由题意得:—50x+136000≤120000解得:x≥320∴800—x≤1.故最多可购买B种树苗1棵.答:若绿化村道的总费用不超过120000元,则最多可购买B种树苗1棵.点睛:本题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师资格证复习计划建议试题及答案
- 2024年计算机二级考试问题探讨试题及答案
- 卵巢黄体破裂护理查房
- 城市化与地理分布的变化趋势分析试题及答案
- 黑龙江林业职业技术学院《日语会话IV》2023-2024学年第二学期期末试卷
- 黑龙江省七台河市重点中学2025届高三高考英语试题系列模拟卷(7)含解析
- 黑龙江省佳木斯市第一中学2025届高三下学期摸底考试语文试题含解析
- 黑龙江省哈尔滨九中2025届高三下学期第二次调研考试化学试题试卷含解析
- 黑龙江省哈尔滨市巴彦县2025年五下数学期末预测试题含答案
- 古代诗词的音乐特征与文化价值试题及答案
- XX学校名师工作室专业发展规划(附学校名师评选方案)
- GB/T 31914-2015电子文件管理系统建设指南
- GB/T 2518-2008连续热镀锌钢板及钢带
- GA 1800.2-2021电力系统治安反恐防范要求第2部分:火力发电企业
- 运输供应商年度评价表
- 电压力锅原理
- 软件著作权申请课件
- 广州市三年级下册英语单词
- 钢板桩项目方案设计(范文参考)
- 山钢钢板材质单
- 男性公民兵役登记表.docx
评论
0/150
提交评论