2025届江苏省苏州地区学校九年级数学第一学期开学联考试题【含答案】_第1页
2025届江苏省苏州地区学校九年级数学第一学期开学联考试题【含答案】_第2页
2025届江苏省苏州地区学校九年级数学第一学期开学联考试题【含答案】_第3页
2025届江苏省苏州地区学校九年级数学第一学期开学联考试题【含答案】_第4页
2025届江苏省苏州地区学校九年级数学第一学期开学联考试题【含答案】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2025届江苏省苏州地区学校九年级数学第一学期开学联考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)当取什么值时,分式无意义()A. B. C. D.2、(4分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.103、(4分)小红随机写了一串数“”,数字“”出现的频数是()A.4 B.5 C.6 D.74、(4分)某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为A. B. C. D.5、(4分)在菱形ABCD中,对角线AC,BD相交于点O,AD=5,AC=8,则OD的长为()A.4 B.5 C.6 D.36、(4分)10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-47、(4分)下列属于最简二次根式的是()A. B. C. D.8、(4分)一次函数y=kx+b的图象如图所示,则一元一次不等式kx+b<0的解集为()A.x<2 B.x>2 C.x<0 D.x>0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.10、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.11、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.12、(4分)如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.13、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直角坐标系xOy中,一次函数y=-12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2(1)求m的值及l2(2)求SΔAOC(3)一次函数y=kx+1的图象为l3,且l1,l2,l315、(8分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.16、(8分)如图,已知△ABC中,∠B=90º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.17、(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,BE=DF,连接AE,AF,EF,G为EF中点,连接AG,DG.(1)如图1:若AB=3,BE=1,求DG;(2)如图2:延长GD至M,使GM=GA,过M作MN∥FD交AF的延长线于N,连接NG,若∠BAE=30°.求证:18、(10分)若a=,b=,请计算a2+b2+2ab的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.20、(4分)张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示,根据这个图象求出y与t之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是_____.21、(4分)当时,二次根式的值是______.22、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.23、(4分)如图,在中,,,以点为圆心,以任意长为半径作弧,分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧,两弧在内交于点,连结并延长,交于点,则的长为____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,等腰△ABC中,已知AC=BC=2,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.25、(10分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?26、(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式

粗加工后销售

精加工后销售

每吨获利(元)

1000

2000

已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】分析:当分式的分母为零时,则分式没有意义.详解:根据题意可得:2x-1=0,解得:x=.故选A.点睛:本题主要考查的是分式的性质,属于基础题型.当分式的分母为零时,则分式无意义.2、D【解析】

要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故选:D.此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.3、D【解析】

根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.【详解】∵一串数“”中,数字“3”出现了1次,∴数字“3”出现的频数为1.故选D.此题考查频数与频率,解题关键在于掌握其概念4、C【解析】

乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可.【详解】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,依题意得:,故选C.本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键

错因分析:中等题.选错的原因是:未能读懂题意导致不能列出正确的等量关系.

5、D【解析】

由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.【详解】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=4∵AD=5,∴OD=AD故选D.本题考查了菱形的性质和勾股定理.6、B【解析】

先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【详解】设报3的人心里想的数是x∵报3与报5的两个人报的数的平均数是4∴报5的人心里想的数应该是8-x于是报7的人心里想的数应该是12-(8-x)=4+x报9的人心里想的数应该是16-(4+x)=12-x报1的人心里想的数应该是20-(12-x)=8+x报3的人心里想的数应该是4-(8+x)=-4-x所以x=-4-x,解得x=-2故答案选择B.本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.7、B【解析】

直接利用最简二次根式的定义分析得出答案.【详解】解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、,故此选项错误;故选:B.此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.8、B【解析】

直接利用函数图像读出结果即可【详解】根据数形结合可得x>2时,函数y<0,故一元一次不等式kx+b<0的解集为x>2,选B本题考查一次函数与不等式的关系,本题关键在于利用数形结合读出答案二、填空题(本大题共5个小题,每小题4分,共20分)9、﹣1<m<1【解析】试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.解:∵点P(m﹣1,m+1)在第二象限,∴m﹣1<0,m+1>0,解得:﹣1<m<1.故填:﹣1<m<1.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10、4或或【解析】

分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;(2)利用勾股定理求出AE边上的高BF即可;(3)求出AE边上的高DF即可【详解】解:分三种情况:(1)当AE=AF=4时,如图1所示:△AEF的腰AE上的高为AF=4;(2)当AE=EF=4时,如图2所示:则BE=5-4=1,BF=;(3)当AE=EF=4时,如图3所示:则DE=7-4=3,DF=,故答案为4或或.本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.11、21【解析】10+7+4=2112、2【解析】

先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【详解】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2此题考查一次函数问题,关键是根据代入法解解析式进行分析.13、1.【解析】

根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.【详解】∵点A(a,-5)和点B(3,b)关于x轴对称,∴a=3,b=5,∴ab=1,故答案为:1.本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=2x;(2)4(4:1);(3)32或2或-【解析】

(1)先求得点C的坐标,再运用待定系数法即可得到l2(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,(3)分三种情况:当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=-【详解】解:(1)把C(m,4)代入一次函数y=-14=-1解得m=2,∴C(2,4设l2的解析式为y=ax,则4=2a解得a=2,∴l2的解析式为(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=-12x+5,令x=0,则y=5;令y=0∴A(10,0),∴AO=10,BO=5,∴S

(3)一次函数y=kx+1的图象为l3,且11,l2∴当l3经过点C(2,4)当l2,l3平行时,当11,l3平行时,故k的值为32或2或-本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.15、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.【解析】

(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;(2)总人数乘以元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.【详解】(1)本次接受随机抽样调查的学生人数为人.∵.故答案为、;(2)元的人数为,补全图形如下:(3)本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;(4)估计该校本次活动捐款金额为元的学生人数为人.本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.16、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【解析】

(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)当t=2时BQ=2×2=4cm,BP=AB-AP=16-2×1=14cm,∠B=90°,∴PQ==cm(2)依题意得:BQ=2t,BP=16-t2t=16-t解得:t=即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时(如下图),则∠C=∠CBQ,∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∴CQ=AQ=10∴BC+CQ=22∴t=22÷2=11秒②当CQ=BC时(如图2),则BC+CQ=24∴t=24÷2=12秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则BE=,∴CE=,故CQ=2CE=14.4,所以BC+CQ=26.4,∴t=26.4÷2=13.2秒由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.17、(1)DG=2;(2)MN+NA=3NG【解析】

(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出AB=3a,AE=2a,CE=(3-1)a,CF=(3+1)a,再由△AFE是等腰直角三角形,G是EF的中点,求出AG=2a,     GQ=12CE=3-12a,   【详解】解:(1)取CF的中点H,连接GH,∵BE=DF,AB=AD,∠ADF=∠B=90°,∴△ABE≌△ADF(SAS),∴AF=AE,∵AB=3,BE=1,∴AF=AE=10,CF=4,CE=2,∴EF=25,∴△AEF是等腰直角三角形,∵G为EF中点,CF的中点H,∴GH是Rt△EFC的中位线,∴GH=12CE=1∴FH=2,∴DH=1,∴DG=2;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,在Rt△ABE中,∠BAE=30°,∴AB=3a,AE=2a,∴CE=(3-1)a,∵DF=BE,∴CF=(3+1)a,∵△AFE是等腰直角三角形,G是EF的中点,∴AG=2a,∵G是EF中点,GQ⊥CF,∴GQ=12CE=3-∴DQ=CD-12CF=3-∴GQ=DQ,∴∠DGQ=45°,∴GK=MK,∴GM=GA,∴GK=MK=a,∵∠FAG=45°,∴GT=a,∴Rt△NGK≌Rt△NGT(HL),∴TN=NK=MN+MK,∠ANG=12∠ANK∵∠BAE=30°,∴∠NAD=30°,∴∠ANK=60°,∴∠ANG=30°,∴TN=3∴TG=1∴TG=1∴3即MN+NA=3本题考查正方形的性质,三角形的性质;熟练掌握正方形的性质,三角形全等的判定定理和性质定理,特殊三角形的性质是解题的关键.18、1.【解析】

将a、b的值代入原式=(a+b)2计算可得.【详解】当a=,b=时,原式=(a+b)2=1.本题主要考查考查二次根式的运算,解题的关键是掌握完全平方公式和二次根式的混合运算顺序和法则.一、填空题(本大题共5个小题,每小题4分,共20分)19、()n.【解析】

第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.【详解】第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2第3个正方形的边长是2,对角线长为2=()3;…,∴第n个正方形的对角线长为()n;故答案为()n.本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.20、表示每小时耗油7.5升【解析】

根据图像可知出发时油箱内有油25升,当行驶2小时时剩油10升,可求出每小时耗油量为7.5升.所以﹣7.5表示表示每小时耗油7.5升.【详解】由图象可知,t=0时,y=25,所以汽车出发时油箱原有油25,又经过2小时,汽车油箱剩余油量10升,即2小时耗油25-10=15升,15÷2=7.5升,故答案为:表示每小时耗油7.5升本题考查一次函数的定义,熟练掌握一次函数的定义与性质是解题关键.21、【解析】

把x=-2代入根式即可求解.【详解】把x=-2代入得此题主要考查二次根式,解题的关键是熟知二次根式的性质.22、十【解析】

根据正多边形的外角和为360°,除以每个外角的度数即可知.【详解】解:∵正多边形的外角和为360°,∴正多边形的边数为,故答案为:十.本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.23、1.【解析】

根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【详解】解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=1;故答案为:1.此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒【解析】

(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形;

AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=,求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4,求得t值即可.【详解】(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论