2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】_第1页
2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】_第2页
2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】_第3页
2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】_第4页
2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解方程配方正确的是()A. B. C. D.2、(4分)如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是()A.①④ B.①③④ C.①②③ D.②③④3、(4分)如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.4、(4分)下列关于变量的关系,其中不是的函数的是()A.B.C.D.5、(4分)下列四组线段中,可以构成直角三角形的是()A.3,4,5 B.1,2,3 C.4,5,66、(4分)若,下列不等式一定成立的是()A. B. C. D.7、(4分)如图,在平行四边形中,按以下步骤作图:(1)分别以A、B为圆心,以大于AB为半径画弧,两弧相交于P、Q两点;(2)连接PQ分别交AB、CD于EF两点;(3)连接AE、BE,若DC=5,EF=3,则△AEB的面积为()A.15 B. C.8 D.108、(4分)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是_____cm.10、(4分)如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若△ABC的周长为10cm,则△OEC的周长为_____.11、(4分)如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,P点从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为______时,∠PAE为等腰三角形?12、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.13、(4分)若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.15、(8分)限速安全驾,文明靠大家,根据道路管理条例规定,在某段笔直的公路L上行驶的车辆,限速60千米时,一观测点M到公路L的距离MN为30米,现测得一辆汽车从A点到B点所用时间为5秒,已知观测点M到A,B两点的距离分别为50米、34米,通过计算判断此车是否超速.16、(8分)小东拿着一根长竹竿进一个宽为5米的矩形城门,他先横着拿但进不去;又竖起来拿,结果竹竿比城门还高1米,当他把竹竿左右斜着拿时,两端刚好顶着城门的对角,问竹竿长多少米?17、(10分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.18、(10分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.20、(4分)如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.21、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.22、(4分)化简:_______.23、(4分)若方程的两根为,,则________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.25、(10分)如图,在平面直角坐标系中,一次函数(,、为常数)的图象与反比例函数的图象交于第二、四象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为-1.(1)求一次函数的解析式;(2)连接、,求的面积.26、(12分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:,,∴,.故选:.此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、A【解析】

连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.【详解】解:如图:连结.,,四边形是平行四边形,是的中点,∵O是BD的中点,①正确;有,,,,,,共个,②错误;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG//AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△A0G的面积=△B0G的面积,.∴;不正确;③错误;是等边三角形.,是菱形,④正确.故答案为A.本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.3、C【解析】

先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.【详解】当时,,则,把代入y2得,解得,所以,解方程,解得,则直线与x轴的交点坐标为,所以不等式的解集是,故选C.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.4、D【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;

只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.

故选D.此题主要考查了函数的定义,正确掌握函数定义是解题关键.5、A【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.32+42=52,能构成直角三角形,故符合题意;B.12+(2)2≠32,不能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故不符合题意;D.12+12≠22,不能构成直角三角形,故不符合题意。故选:A.此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.6、B【解析】

根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】、左边减2,右边2,故错误;、两边都乘以2,不等号的方向不变,故正确;、左边除以,右边除以2,故错误;、两边乘以不同的数,故错误;故选:.本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0.而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7、B【解析】

利用基本作图得到EF⊥AB,再根据平行四边形的性质得到AB=CD=5,然后利用三角形面积公式计算.【详解】解:由作图得EF垂直平分AB,即EF⊥AB,∵四边形ABCD为平行四边形,∴AB=CD=5,∴△AEB的面积=×5×3=.故选:B.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8、D【解析】

因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.【详解】∵AH⊥BC,F是AC的中点,

∴FH=AC=1cm,

∴AC=20cm,

∵点E,D分别是AB,BC的中点,

∴ED=AC,

∴ED=1cm.

故答案为:1.本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.10、5cm【解析】先由平行四边形的性质可知,O是AC的中点,由已知E是BC的中点,可得出OE是△ABC的中位线,再通过△ABC的周长即可求出△OEC的周长.解:在平行四边形ABCD中,有∵点E是BC的中点∴∴∴△OEC的周长△ABC的周长=5cm故答案为:5cm11、3或2或.【解析】

根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.【详解】∵四边形ABCD是长方形,∴∠D=90°,AB=CD=8,∵CE=5,∴DE=3,在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE==5;过E作EM⊥AB于M,过P作PQ⊥CD于Q,则AM=DE=3,若△PAE是等腰三角形,则有三种可能:当EP=EA时,AP=2DE=6,所以t==2;当AP=AE=5时,BP=8−5=3,所以t=3÷1=3;当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,则x2=(x−3)2+42,解得:x=,则t=(8−)÷1=,综上所述t=3或2或时,△PAE为等腰三角形.故答案为:3或2或.此题考查矩形的性质,等腰三角形的判定,解题关键在于利用勾股定理进行计算.12、【解析】

根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.【详解】解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2,∴AE=,∴GF=AE=.故答案为.本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.13、x<【解析】

根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.【详解】依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.解得.故直线l1:y1=x+1.同理,直线l2:y2=x-1.由k1x+b1>k2x+b2得到:x+1>x-1.解得x<.故答案是:x<.此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.三、解答题(本大题共5个小题,共48分)14、(1)见解析(2)DE⊥AF【解析】试题分析:(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF,进而得出CF=CD;(2)利用全等三角形的判定与性质得出AE=EF,再利用角平分线的性质以及等角对等边求出DA=DF,利用等腰三角形的性质求出即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC中点,∴BE=CE,则在△BAE和△CFE中,,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD;(2)解:DE⊥AF,理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.【点评】此题主要考查学生对平行四边形的性质以及全等三角形的判定与性质,证明线段相等的常用方法是证明三角形全等.15、此车没有超速【解析】

在Rt△AMN中根据勾股定理求出AN,在Rt△BMN中根据勾股定理求出BN,由AN+NB求出AB的长,根据路程除以时间得到速度,即可做出判断.【详解】解:在中,,,米,在中,,,米,米,汽车从A到B的平均速度为米秒,米秒千米时千米时,此车没有超速.本题考核知识点:勾股定理的应用.解题关键点:把问题转化为在直角三角形中的问题.16、12米【解析】

可设竹竿长为x,再根据竹竿比城门高1米,竹竿左右斜着拿时,两端刚好顶着城门的对角,利用勾股定理可得结果.【详解】解:设竹竿长x米,x2=(x-1)2+52;,解得x=12,答:竹竿长为12米.本题考查勾股定理的应用,学生需要掌握勾股定理的定义即可求解.17、1米【解析】

设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.【详解】设旗杆的高度为x米,则绳长为(x+1)米,

根据题意得:(x+1)2=x2+52,即2x-24=0,

解得:x=1.

答:旗杆的高度是1米.此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.18、(1)见详解;(2)【解析】

(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.【详解】(1)证明:∵AE∥BC,DE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,∴AD=.∴四边形AEBD的周长=.本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.一、填空题(本大题共5个小题,每小题4分,共20分)19、0.4m【解析】

先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.【详解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案为:0.4.本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.20、0.5【解析】

经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.【详解】连接AC、OB,交于D点,作DE⊥OA于E点,∵四边形OABC为矩形,∴DE=AB=3,OE=OA=7.5,∴D(7.5,3),∵直线恰好将矩形OABC分成面积相等的两部分,∴直线经过点D,∴将(7.5,3)代入直线得:3=×7.5+b,解得:b=0.5,故答案为:0.5.本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.21、【解析】

先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.【详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论