版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是()A. B. C. D.2.如图,长方形的各边分别平行于轴或轴,物体甲和物体乙分别由点同时出发,沿矩形的边作环绕运动,物体甲按逆时针方向以个单位/秒匀速运动,物体乙按顺时针方向以个单位/秒匀速运动,则两个物体运动后的第次相遇地点的坐标是()A. B. C. D.3.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,分别沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)4.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(﹣a,b),如f(1,2)=(﹣1,2);g(a,b)=(b,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=()A.(5,﹣9) B.(﹣5,﹣9) C.(﹣9,﹣5) D.(﹣9,5)5.如图,在一单位为1的方格纸上,,,…,都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形,若的顶点坐标分别为,,,则依图中所示规律,的坐标为()A. B. C. D.6.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为()A.(2018,0) B.(1008,1) C.(1009,1) D.(1009,0)7.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则,.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0) B.(0,2)C.(2,-4) D.(-4,2)8.如图,在平面直角坐标系中,存在动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P的坐标是()A.(2022,1) B.(2021,0) C.(2021,1) D.(2021,2)9.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是()A.﹣5 B.3 C.﹣1 D.510.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2021的坐标为()A.(-3,3) B.(-2,2) C.(3,-1) D.(2,4)二、填空题11.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2020次相遇地点的坐标是_____.12.如图,一个机器人从点O出发,向正东方向走3m到达点,再向正北方向走6m到达点,再向正西方向走9m到达点,再向正南方向走12m到达点,再向正东方向走15m到达点,按如此规律走下去,当机器人走到点时,点的坐标是________.13.如图,在平面直角坐标系中,半径均为1个单位长度的半圆、、,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是______.14.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用,,,…表示,则顶点的坐标是_____.15.如图,数轴上点的初始位置表示的数为,将点做如下移动:第次点向左移动个单位长度至点,第次从点向右移动个单位长度至点,第次从点向左移动6个单位长度至点,按照这种移动方式进行下去,点表示的数是__________,如果点与原点的距离等于,那么的值是__________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排行,如,,,,,,......根据这个规律探索可得,第个点的坐标为__________.17.在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如,三点坐标分别为A(0,3),B(-3,4),C(1,-2),则“水平底”a=4,“铅垂高”h=6,“矩面积”S=ah=24.若D(2,2),E(-2,-1),F(3,m)三点的“矩面积”为20,则m的值为______.18.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.19.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.20.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2020次相遇地点的坐标是____.三、解答题21.在平面直角坐标系中,点,的坐标分别为,,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,.(1)如图1,求点,的坐标及四边形的面积;图1(2)如图1,在轴上是否存在点,连接,,使?若存在这样的点,求出点的坐标;若不存在,试说明理由;(3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由.图2(4)在坐标平面内是否存在点,使?若存在这样的点,直接写出点的坐标的规律;若不存在,请说明理由.22.如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点A与点B的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点A与点B的“非常距离”为|y1﹣y2|.(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为;(2)已知点C(﹣1,2),点D为y轴上的一个动点.①若点C与点D的“非常距离”为2,求点D的坐标;②直接写出点C与点D的“非常距离”的最小值.23.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.24.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).25.如图1,在平面直角坐标系中,,且满足,过作轴于.(1)求的面积.(2)若过作交轴于,且分别平分,如图2,求的度数.(3)在轴上存在点使得和的面积相等,请直接写出点坐标.26.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由.27.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,,,其中a、b满足关系式:.______,______,的面积为______;如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由.28.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0,D为线段AC的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).(1)则A点的坐标为;点C的坐标为,D点的坐标为.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,请确定∠OHC,∠ACE和∠OEC的数量关系,并说明理由.29.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.30.已知、两点的坐标分别为,,将线段水平向右平移到,连接,,得四边形,且.(1)点的坐标为______,点D的坐标为______;(2)如图1,轴于,上有一动点,连接、,求最小时点位置及其坐标,并说明理由;(3)如图2,为轴上一点,若平分,且于,.求与之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=,15=,21=,得到规律:点A2n+1的横坐标为,其中的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,,即,故A2021的横坐标为,A2021的纵坐标为,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.2.D解析:D【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】∵矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇,此时相遇点的坐标为:(-1,-1),故选:D.【点睛】本题考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.3.D解析:D【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙的运动速度是物体甲的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵,故两个物体运动后的第2018次相遇地点是第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇,此时相遇点的坐标为(-1,-1)故选:D.【点睛】此题考查点的坐标的规律,长方形的性质,根据题意依次计算得到运动点的坐标的变化规律并运用解决问题是解题的关键.4.C解析:C【分析】根据f,g两种变换的定义自内而外进行解答即可.【详解】解:由题意得,f(5,﹣9)]=(﹣5,﹣9),∴g[f(5,﹣9)]=g(﹣5,﹣9)=(﹣9,﹣5),故选:C.【点睛】本题考查了新定义坐标变换,根据题意、弄懂两种变换的方法是解答本题的关键.5.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A2(1,-1),A4(2,2),A6(1,-3),A8(2,4),A10(1,-5),A12(2,6),…,∵2020÷4=505,∴点A2020在第一象限,横坐标是2,纵坐标是2020÷2=1010,∴A2020的坐标为(2,1010).故选:D.【点睛】本题是对点的坐标变化规律的考查,根据2012是偶数,求出点的脚码是偶数时的变化规律是解题的关键.6.C解析:C【分析】先确定A2、A6、A10、414、…的坐标,然后归纳点的坐标的变化规律“A4n+2(1+2n,1)(n为自然数)”,按此规律解答即可.【详解】解:由题意得:A2(1,1),A6(3,1),A10(5,1),A14(7,1),…∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504.∵1+2×504=1009,∴A2018(1009,1).故选C.【点睛】本题考查了点坐标的规律,根据点的变化特点、归纳出“A4n+1(2n,1)(n为自然数)”的规律是解答本题的关键.7.A解析:A【解析】试题解析:设P1(x,y),∵点A(1,-1)、B(-1,-1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=-1,解得x=2,y=-4,∴P1(2,-4).同理可得,P1(2,-4),P2(-4,2),P3(4,0),P4(-2,-2),P5(0,0),P6(0,2),P7(2,-4),…,…,∴每6个数循环一次.∵=335…5,∴点P2015的坐标是(0,0).故选A.8.C解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.9.C解析:C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.10.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A2021的坐标与A1的坐标相同,为(2,4).故选:D.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题11.(-1,1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的边长为4和2,因为物体乙是物体甲的解析:(-1,1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,相遇时,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为,在BC边相遇,相遇地点的坐标是(-1,1);②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为,在DE边相遇,相遇地点的坐标是(-1,-1);③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为,在A点相遇,相遇地点的坐标是(2,0);…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2020÷3=673…1,故两个物体运动后的第2019次相遇地点的是点A,所以第2020次相遇地点的坐标是(-1,1).故答案为:(-1,1).【点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题.能通过计算发现规律是解决问题的关键.12.【分析】由于一个机器人从O点出发,向正东方向走3m,到达A1点,那么A1点坐标为(3,0),再向正北走6m到达A2点,那么A2点坐标为(3,6),再向正西走9m到达A3点,那么A3点坐标为(-6解析:【分析】由于一个机器人从O点出发,向正东方向走3m,到达A1点,那么A1点坐标为(3,0),再向正北走6m到达A2点,那么A2点坐标为(3,6),再向正西走9m到达A3点,那么A3点坐标为(-6,6),然后依此类推,找出规律,即可求出A6的坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,点的坐标为;点的坐标为,即;点的坐标为,即;点的坐标为,即;点的坐标为,即;依此类推,可得点的坐标为,即.故答案为.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.13.【解析】【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“,,,”,依此规律即可得出第2017秒时,点P的坐标.【详解】以时间为点P的下标.观察,发现规律:,,,,解析:【解析】【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“,,,”,依此规律即可得出第2017秒时,点P的坐标.【详解】以时间为点P的下标.观察,发现规律:,,,,,,,,,,.,第2017秒时,点P的坐标为,故答案为:.【点睛】本题考查了规律型中点的坐标,解题的关键是找出点P的变化规律“,,,”本题属于基础题,难度不大,解决该题型题目时,根据圆的半径及时间罗列出部分点P的坐标,根据坐标发现规律是关键.14.(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限解析:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限和所在的正方形的序号确定点的坐标.详解:由图形可知,每四个所在的象限为一个循环,下标能被4整除的点在第四象限,下标被4除余1的点在第三象限,下标被4除余2的点在第二象限,下标被4除余3的点在第一象限;第一个正方形的边长为×=2;第二个正方形的边长为×=4;第三个正方形的边长为×=6;第四个正方形的边长为×=8;…,依此类推,第n个正方形的边长为×=2n.2018=4×504+2,则点在第二象限,所在正方形的边长为2×504,所以点的坐标为(-505,505).故答案为(-505,505).点睛:从图形的变体中找出点所在的象限随点的下标变化的规律,再找出每一正方形的边长随正方形的序列变化的规律.15.-4,8或11【解析】序号为奇数的点在点A的左边,各点所表示的数依次减少2,分别为0,-2,-4,-6,-8,-10……,序号为偶数的点在点A的右侧,各点所表示的数依次增加2,分解析:-4,8或11【解析】序号为奇数的点在点A的左边,各点所表示的数依次减少2,分别为0,-2,-4,-6,-8,-10……,序号为偶数的点在点A的右侧,各点所表示的数依次增加2,分别为4,6,8,10……,所以A5表示的数是-4,当点与原点的距离等于10时,n为8或11,故答案为-4;n为8或11.16.(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n的有n个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93解析:(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n的有n个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93个点位于第几行第几列,然后对应得出坐标规律,将行列数代入规律式.【详解】在纵坐标上,第一行有一个点,第二行有2个点,…,第n行有n个点,并且奇数行点数对称,而偶数行点数x轴右方比左方多一个,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第93个点在第14行上,所以奇数行的坐标自右而左为(,),(,),,(,),偶数行的坐标自左而右为(,),(,),,(,),由加法推算可得到第93个点位于第14行自左而右第2列.∴第93个点的坐标为(-5,14),故答案为:(-5,14).【点睛】本题主要考查了点的规律型,观察得到纵坐标相等的点的个数与纵坐标相同是解题的关键,还要注意纵坐标为奇数和偶数时的排列顺序不同.17.或3【分析】根据矩面积的定义表示出水平底”a和铅垂高“h,利用分类讨论对其铅垂高“h进行讨论,从而列出关于m的方程,解出方程即可求解.【详解】∵D(2,2),E(-2,-1),F(3,m)解析:或3【分析】根据矩面积的定义表示出水平底”a和铅垂高“h,利用分类讨论对其铅垂高“h进行讨论,从而列出关于m的方程,解出方程即可求解.【详解】∵D(2,2),E(-2,-1),F(3,m)∴“水平底”a=3-(-2)=5“铅垂高“h=3或|1+m|或|2-m|①当h=3时,三点的“矩面积”S=5×3=15≠20,不合题意;②当h=|1+m|时,三点的“矩面积”S=5×|1+m|=20,解得:m=3或m=-5(舍去);③当h=|2-m|时,三点的“矩面积”S=5×|2-m|=20,解得:m=-2或m=6(舍去);综上:m=3或-2故答案为:3或-2【点睛】本题考查坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.18.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.19.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,,∵2021=505×4+1∴的横坐标为2×505=1010,纵坐标为1即故答案为:【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.20.(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N和M的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N和M的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M所走过的路程,则第二次和第三次相遇过程中M所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知:∴正方形ABCD的边长为4,周长为4×4=16,∴点M与点N第一次相遇的时间为:(秒)∴此时点M所运动的路程为:4×1=4即M从(2,0)到了(0,2),∴M、N第一次相遇的坐标为(0,2),又∵M、N的速度比为1:3,时间相同,∵M、N的路程比为1:3,∴每次相遇时,M点运动的路程均为∴第二次相遇时,M在(-2,0),即(-2,0)为相遇地点的坐标,第三相遇时,M在(0,-2),即(0,-2)为相遇地点的坐标,第四次相遇时,M在(2,0),即(2,0)为相遇地点的坐标,第五相遇时,M在(0,2),即(0,2)为相遇地点的坐标,……∵∴M和N两点出发后的第2020次相遇在(2,0).故答案为:(2,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.三、解答题21.(1),,;(2)存在,或;(3)存在,或;(4)存在,的纵坐标总是4或.或者:点在平行于轴且与轴的距离等于4的两条直线上;或者:点在直线或直线上【分析】(1)根据点的平移规律,即可得到对应点坐标;(2)由,可以得到,即可得到P点坐标;(3)由,可以得到,结合点C坐标,就可以求得点Q坐标;(4)由,可以AB边上的高的长度,从而得到点的坐标规律.【详解】(1)∵点,点∴向上平移3个单位,再向右平移1个单位之后对应点坐标为,点∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴设中,AB边上的高为h则:∴∴点在直线或直线上【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键.22.(1)4;(2)①或;②1.【分析】(1)依照题意,分别求出和,比较大小,得出答案,(2)点在轴上所以横坐标为0,,所以点和点的纵坐标差的绝对值应为2,可得点坐标,(3)已知点和点的横坐标差的绝对值恒等于1,纵坐标差的绝对是个动点问题,取值范围和1比较,可得出最小值为1.【详解】解:(1),,,,点与点的“非常距离”为4.故答案为:4.(2)①点在轴上所以横坐标为0,点和点的纵坐标差的绝对值应为2,设点的纵坐标为,,解得或,点的坐标为或,故点的坐标为或;②最小值为1,理由为已知点和点的横坐标差的绝对值恒等于1,,设点的纵坐标为,当时,,可得点与点的“非常距离”为1,当或时,,可得点与点的“非常距离”为.,点与点的“非常距离”的最小值为1,故点与点的“非常距离”的最小值为1.【点睛】本题考查了直角坐标系坐标结合绝对值的应用,是新定义问题,难点在于第三问的动点位置取值范围讨论,需要学生根据题意正确讨论.23.(1)(3,4);(2)①t=时,AP所在直线垂直于x轴;②当t为或时,S=S△APE.【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;②分和两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)①要使AP所在直线垂直于x轴.如图1,只需要Px=Ax,则t+3=3t,解得:,所以即时,AP所在直线垂直于x轴;②由题意知,OH=7,所以当时,点D与点H重合,所以要分以下两种情况讨论:情况一:当时,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情况二:当时,如图2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,综上所述,当t为或时,S=S△APE.【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.24.(1)①E(3,﹣2)②见解析;③,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.25.(1)4;(2);(2)或.【分析】(1)根据非负数的性质易得,,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,,所以;然后把代入计算即可;(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出.【详解】解:(1),,,,,,,,的面积;(2)解:轴,,,又∵,∴,过作,如图①,,,,,分别平分,,即:,,;(3)或.解:①当在轴正半轴上时,如图②,设,过作轴,轴,轴,,,解得,②当在轴负半轴上时,如图③,解得,综上所述:或.【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键.26.(1)(0,2),(4,2),见解析,ABDC面积:8;(2)存在,P的坐标为(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C、D的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)分点P在x轴和y轴上两种情况,依据S△PAC=S四边形ABCD求解可得.【详解】(1)由题意知点C坐标为(﹣1+1,0+2),即(0,2),点D的坐标为(3+1,0+2),即(4,2),如图所示,S四边形ABDC=2×4=8;(2)当P在x轴上时,∵S△PAC=S四边形ABCD,∴,∵OC=2,∴AP=8,∴点P的坐标为(7,0)或(﹣9,0);当P在y轴上时,∵S△PAC=S四边形ABCD,∴,∵OA=1,∴CP=16,∴点P的坐标为(0,18)或(0,﹣14);综上,点P的坐标为(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【点睛】本题考查了坐标与图形性质,三角形的面积,坐标与图形变化﹣平移,熟记各性质是解题的关键.27.(1);;6;(2)证明见解析;(3)
,理由见解析.【详解】分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题;【解答】(1)解:如图1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵点C(0,-4),D(-3,-4),∴CD=3,且CD∥x轴,∴△BCD的面积=×4×3=6;故答案为-4,-3,6.(2)如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如图3中,结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版办公家具定制与售后支持协议3篇
- 二零二五年度跨境离婚协议书及财产转移范本3篇
- 二零二五年度海洋资源开发项目技术人员聘任协议3篇
- 二零二五年度KTV加盟店运营管理及培训合同范本3篇
- 二零二五版公积金个人提前还款合同3篇
- 西安航空学院《材料科学基础I》2023-2024学年第一学期期末试卷
- 二零二五年度柑橘产品溯源与食品安全合同3篇
- 乌海职业技术学院《视觉艺术赏析与表达》2023-2024学年第一学期期末试卷
- 个性化桶装水供应服务协议2024版版B版
- 2024年环保设备生产与销售合作合同
- 2024年关爱留守儿童工作总结
- GB/T 45092-2024电解水制氢用电极性能测试与评价
- 《算术平方根》课件
- DB32T 4880-2024民用建筑碳排放计算标准
- 2024-2024年上海市高考英语试题及答案
- 注射泵管理规范及工作原理
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- 大唐电厂采购合同范例
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- IEC 62368-1标准解读-中文
- 15J403-1-楼梯栏杆栏板(一)
评论
0/150
提交评论