广西桂林市2025届高一数学第一学期期末统考模拟试题含解析_第1页
广西桂林市2025届高一数学第一学期期末统考模拟试题含解析_第2页
广西桂林市2025届高一数学第一学期期末统考模拟试题含解析_第3页
广西桂林市2025届高一数学第一学期期末统考模拟试题含解析_第4页
广西桂林市2025届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林市2025届高一数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则与的夹角为A. B.C. D.2.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或23.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④4.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.5.设,则的值为()A.0 B.1C.2 D.36.已知角x的终边上一点的坐标为(sin,cos),则角x的最小正值为()A. B.C. D.7.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.48.在下列区间中函数的零点所在的区间为()A. B.C. D.9.已知x,y是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知全集,集合,集合,则集合A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____12.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.13.若命题“,”为假命题,则实数的取值范围为______.14.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________15.已知.若实数m满足,则m的取值范围是__16.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若集合,,.(1)求;(2)若,求实数的取值范围.18.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)19.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.20.从下面所给三个条件中任意选择一个,补充到下面横线处,并解答.条件一、,;条件二、方程有两个实数根,;条件三、,.已知函数为二次函数,,,.(1)求函数的解析式;(2)若不等式对恒成立,求实数k的取值范围.21.如图,已知是半径为圆心角为的扇形,是该扇形弧上的动点,是扇形的内接矩形,记为.(1)若的周长为,求的值;(2)求的最大值,并求此时的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题2、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C3、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.4、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.5、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.6、B【解析】先根据角终边上点的坐标判断出角的终边所在象限,然后根据三角函数的定义即可求出角的最小正值【详解】因为,,所以角的终边在第四象限,根据三角函数的定义,可知,故角的最小正值为故选:B【点睛】本题主要考查利用角的终边上一点求角,意在考查学生对三角函数定义的理解以及终边相同的角的表示,属于基础题7、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.8、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.9、C【解析】由充要条件的定义求解即可【详解】因为,若,则,若,则,即,所以,即“”是“”的充要条件,故选:C.10、A【解析】,所以,故选A.考点:集合运算.二、填空题:本大题共6小题,每小题5分,共30分。11、①②##②①【解析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②12、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:13、【解析】命题为假命题时,二次方程无实数解,据此可求a的范围.【详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.14、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案15、【解析】由题意可得,进而解不含参数的一元二次不等式即可求出结果.【详解】由题意可知,即,所以,因此,故答案:.16、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.18、(1)(2)42h【解析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【点睛】本题主要考查函数模型的应用,熟记指数函数的性质即可,属于常考题型.19、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.20、(1)选择条件一、二、三均可得(2)【解析】(1)根据二次函数的性质,无论选择条件一、二、三均可得的对称轴为,进而待定系数求解即可;(2)由题对恒成立,进而结合基本不等式求解即可.【小问1详解】解:选条件一:设因为,,所以的对称轴为,因为,,所以,解得,所以选条件二:设因为方程有两个实数根,,所以的对称轴为,因为,,所以,解得,所以选条件三:设因为,,所以的对称轴为,因为,,所以,解得,所以【小问2详解】解:对恒成立对恒成立当且仅当时取等号,∴所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论