2025届延安市重点中学数学高二上期末联考模拟试题含解析_第1页
2025届延安市重点中学数学高二上期末联考模拟试题含解析_第2页
2025届延安市重点中学数学高二上期末联考模拟试题含解析_第3页
2025届延安市重点中学数学高二上期末联考模拟试题含解析_第4页
2025届延安市重点中学数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届延安市重点中学数学高二上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.2.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.3.已知,为椭圆的左、右焦点,P为椭圆上一点,若,则P点的横坐标为()A. B.C.4 D.94.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.505.在数列中,,,则()A. B.C. D.6.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为17.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.等差数列中,已知,则()A.36 B.27C.18 D.99.焦点坐标为(1,0)抛物线的标准方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y10.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A. B.C.24 D.4811.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.12.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________14.过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______15.命题,恒成立是假命题,则实数a取值范围是________________16.甲、乙两名学生通过某次听力测试的概率分别为和,且是否通过听力测试相互独立,两人同时参加测试,其中有且只有一人能通过的概率是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)求证:对,直线l与圆C总有两个不同交点;(2)当时,求直线l被圆C截得的弦长18.(12分)已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.19.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围20.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程21.(12分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过点作轴的平行线交轴于点,过点的直线与椭圆交于两个不同的点、,直线、与轴分别交于、两点,若,求直线的方程;(3)在第(2)问条件下,点是椭圆上的一个动点,请问:当点与点关于轴对称时的面积是否达到最大?并说明理由.22.(10分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.2、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.3、B【解析】设,,根据向量的数量积得到,与椭圆方程联立,即可得到答案;【详解】设,,,与椭圆联立,解得:,故选:B4、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.5、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.6、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.7、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.8、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B9、B【解析】由题意设抛物线方程为y2=2px(p>0),结合焦点坐标求得p,则答案可求【详解】由题意可设抛物线方程为y2=2px(p>0),由焦点坐标为(1,0),得,即p=2∴抛物的标准方程是y2=4x故选B【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,其中解答中熟记抛物线的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题10、C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.11、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B12、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.14、【解析】根据题意,作出抛物线的简图,求出抛物线的焦点坐标以及准线方程,分析可得为直角梯形中位线,由抛物线的定义分析可得答案【详解】如图,抛物线的焦点为,准线为,分别过,作准线的垂线,垂足为,,则有过的中点作准线的垂线,垂足为,则为直角梯形中位线,则,即,解得.所以的横坐标为故答案为:15、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.16、##0.5【解析】分两种情况,结合相互独立事件公式即可求解.【详解】记甲,乙通过听力测试的分别为事件,则可得,两人有且仅有一人通过为事件,故所求事件概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由直线过定点,只需判断定点在圆内部,即可证结论.(2)由点线距离公式求弦心距,再利用半径、弦心距、弦长的几何关系求弦长即可.【小问1详解】直线恒过定点,又,所以点在圆的内部,所以直线与圆总有两个不同的交点,得证.【小问2详解】由题设,,又的圆心为,半径为,所以到直线的距离,所以所求弦长为18、(1);(2).【解析】(1)根据给定的递推公式变形,再构造常数列求解作答.(2)利用(1)的结论求出,再利用裂项相消法求和,由单调性求出最大整数m值作答.【小问1详解】依题意,,当时,,两式相减得:,即,整理得:,于是得,所以数列{an}的通项公式是.【小问2详解】由(1)得,,数列是递增数列,因此,,于是有,则,不等式成立,则,,于是得,所以使不等式成立的最大整数m的值是505.【点睛】思路点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的19、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.20、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为21、(1);(2);(3)当点与点关于轴对称时,的面积达到最大,理由见解析.【解析】(1)设,可得出,,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)分析可知直线的斜率存在,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得,结合韦达定理可求得的值,即可得出直线的方程;(3)设与直线平行且与椭圆相切的直线的方程为,将该直线方程与椭圆的方程联立,由判别式为零可求得,分析可知当点为直线与椭圆的切点时,的面积达到最大,求出直线与椭圆的切点坐标,可得出结论.【小问1详解】解:因为,设,则,,所以,椭圆的方程可表示为,将点的坐标代入椭圆的方程可得,解得,因此,椭圆的方程为.【小问2详解】解:设线段的中点为,因为,则轴,故直线、的倾斜角互补,易知点,若直线轴,则、为椭圆短轴的两个顶点,不妨设点、,则,,,不合乎题意.所以,直线的斜率存在,设直线的方程为,设点、,联立,可得,,由韦达定理可得,,,,则,所以,解得,因此,直线的方程为.【小问3详解】解:设与直线平行且与椭圆相切的直线的方程为,联立,可得(*),,解得,由题意可知,当点为直线与椭圆的切点时,此时的面积取最大值,当时,方程(*)为,解得,此时,即点.此时,点与点关于轴对称,因此,当点与点关于轴对称时,的面积达到最大.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值22、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解】(1)因为函数在上单调递增,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论