2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省沈阳市铁路实验中学高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.2.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.3.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.4.设集合或,,则()A. B.C. D.5.若,则()A.22 B.19C.-20 D.-196.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见首日行里数,请公仔细算相还.”其大意为:有一个人走里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,恰好走了天到达目的地,则该人第一天走的路程为()A.里 B.里C.里 D.里7.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种8.设是定义在R上的函数,其导函数为,满足,若,则()A. B.C. D.a,b的大小无法判断9.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.9210.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.11.已知空间向量,则()A. B.C. D.12.已知点,若直线与线段没有公共点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________14.已知等差数列满足,公差,则当的前n项和最大时,___________15.已知三棱锥中,平面BCD,,,,则三棱锥的外接球的表面积为_____.16.命题,恒成立是假命题,则实数a取值范围是________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为,离心率为(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值18.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.19.(12分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.20.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.21.(12分)已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.22.(10分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A2、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.3、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.4、B【解析】根据交集的概念和运算直接得出结果.【详解】由题意知,.故选:B.5、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C6、C【解析】建立等比数列的模型,由等比数列的前项和公式求解【详解】记第天走的路程为里,则是等比数列,,,故选:C7、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D8、A【解析】首先构造函数,再利用导数判断函数的单调性,即可判断选项.【详解】设,,所以函数在单调递增,即,所以,那么,即.故选:A9、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.10、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C11、A【解析】求得,即可得出.【详解】,,,.故选:A.12、A【解析】分别求出,即可得到答案.【详解】直线经过定点.因为,所以,所以要使直线与线段没有公共点,只需:,即.所以的取值范围是.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:14、3【解析】根据公式求出前n项和,再利用二次函数的性质.【详解】因为等差数列,,所以,当时,取到最大值.故答案为:3.15、【解析】由题意可知三棱锥的外接球即为三棱柱的外接球,进而求出三棱柱的外接球的半径即可得出结果.【详解】因为,,所以,故,又因为平面BCD,因此三棱锥的外接球即为三棱柱的外接球,如图:取的中点,则为外接圆的圆心,取的中点,则为外接圆的圆心,则的中点即为外接球的球心,因此,,因此,所以三棱锥的外接球的表面积为,故答案为:.16、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由焦距为,离心率为结合性质,列出关于的方程组,求出从而求出椭圆方程;(2)设出直线方程,代入椭圆方程,求出点D、E的坐标,然后利用|BD|,|BE|,|DE|成等比数列,即可求解【详解】(1)由已知,,解得,所以椭圆的方程为(2)由(1)得过点的直线为,由,得,所以,所以,依题意,因为,,成等比数列,所以,所以,即,当时,,无解,当时,,解得,所以,解得,所以,当,,成等比数列时,【点睛】方法点睛(1)求椭圆方程的常用方法:①待定系数法;②定义法;③相关点法(2)直线与圆锥曲线的综合问题,常将直线方程代入圆锥曲线方程,从而得到关于(或)的一元二次方程,设出交点坐标),利用韦达定理得出坐标的关系,同时注意判别式大于零求出参数的范围(或者得到关于参数的不等关系),然后将所求转化到参数上来再求解.如本题及,联立即可求解.注意圆锥曲线问题中,常参数多、字母多、运算繁琐,应注意设而不求的思想、整体思想的应用.属于中档题.18、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点睛】直线过定点问题,一般处理思路是分斜率存在和斜率不存在两种情况,特别是斜率存在时,设出直线为,联立后用韦达定理得到两根之和与两根之积,结合题干条件得到等量关系,求出的关系,进而得到定点坐标.19、(1);(2)或.【解析】(1)根据给定条件求出数列的公差及首项即可计算作答.(2)由(1)求出,建立方程求解作答.【小问1详解】设等差数列公差为,因,则,解得,于是得,所以数列的通项公式为:.【小问2详解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.20、(1);(2).【解析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,应用累加法、错位相减法及等比数列前n项和公式求的通项公式.【小问1详解】令公差为d,由得:,解得.所以.【小问2详解】,则,累加整理,得:,①,②②-①得:,又满足上式,故.21、(1)(2)或【解析】(1)结合已知条件可得到点P在线段QF的垂直平分线上,然后利用椭圆定义即可求解;(2)结合已知条件设出直线的方程,然后联立椭圆方程,利用弦长公式求出,再设出直线NH的方程,求出N点坐标,进而求出,然后表示出,再利用换元法和均值不等式求解即可.【小问1详解】设点的坐标为,∵,∴点P在线段QF垂直平分线上,∴,又∵,∴∴点P在以C,F为焦点的椭圆上,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论