版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
泰安市重点中学2025届高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,若,则的值为()A.8 B.2C. D.-22.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.3.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.4.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.5.已知,则的大小关系为A. B.C. D.6.方程的解所在的区间是A. B.C. D.7.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.58.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是A.1 B.C. D.9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,10.函数的一个零点是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解为__________12.已知圆,圆,则两圆公切线的方程为__________13.定义域为R,值域为-∞,114.已知某扇形的半径为,面积为,那么该扇形的弧长为________.15.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______16.已知函数,若,则___________;若存在,满足,则的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆与直线相切,圆心在直线上,且直线被圆截得的弦长为.(1)求圆的方程,并判断圆与圆的位置关系;(2)若横截距为-1且不与坐标轴垂直的直线与圆交于两点,在轴上是否存在定点,使得,若存在,求出点坐标,若不存在,说明理由.18.已知,,且函数有奇偶性,求a,b的值19.设,且.(1)求a的值及的定义域;(2)求在区间上的值域.20.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值21.已知函数.(1)求的单调区间;(2)若,且,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.2、B【解析】求出,根据题意结合正弦函数图象可得答案.【详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.3、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B4、C【解析】由题意得:或,故选C.考点:直线平行的充要条件5、D【解析】,且,,,故选D.6、C【解析】根据零点存在性定理判定即可.【详解】设,,根据零点存在性定理可知方程的解所在的区间是.故选:C【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题.7、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.8、D【解析】根据题意,函数f(x)是定义在R上的偶函数,则=,又由f(x)区间(﹣∞,0)上单调递增,则f(x)在(0,+∞)上递减,则f(32a﹣1)⇔f(32a﹣1)⇔32a﹣1<⇔32a﹣1,则有2a﹣1,解可得a,即的最大值是,故选:D.9、C【解析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【点睛】本题考查了分式函数值域的求法及对新定义的理解,属中档题10、B【解析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【详解】解:令函数,则,则,当时,.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,则解得:或即,∴故答案为12、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.13、fx【解析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx14、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:16、①.②.【解析】若,则,然后分、两种情况求出的值即可;画出的图象,若存在,满足,则,其中,然后可得,然后可求出答案.【详解】因为,所以若,则,当时,,解得,满足当时,,解得,不满足所以若,则的图象如下:若存在,满足,则,其中所以因为,所以,,所以故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)相交(2)【解析】(1)根据条件求得圆心和半径,从而由圆心距确定两圆的位置关系;(2)设,与圆联立得,用坐标表示斜率结合韦达定理求解即可.试题解析:(1)设圆心为,则,(2)联立,,(2)法二:联立假设存在则,故存在)满足条件.18、为奇函数,,【解析】由函数奇偶性的定义列方程求解即可【详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,19、(1),;(2)【解析】(1)由代入计算可得的值,根据对数的真数大于零,求出函数的定义域;(2)由(1)可知,设,则,由的取值范围求出的范围,即可求出的值域;【详解】解:(1)∵,∴,∴,则由,解得,即,所以的定义域为(2),设,则,,当时,,而,,∴,,所以在区间上的值域为【点睛】本题考查待定系数法求函数解析式,对数型复合函数的值域,属于中档题.20、(1)证明过程详见解析(2)【解析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位线,∴EF∥D1B,∵D1B⊂平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是异面直线EF与BC所成的角(或所成角的补角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1⊄平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东邮电职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 分布式发电集成管理-深度研究
- 2025年广东南华工商职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年平顶山文化艺术职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年常德职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年安徽警官职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年安徽艺术职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 直播基地场地施工方案
- 2025年安徽汽车职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年天津滨海职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年春新沪科版物理八年级下册全册教学课件
- 2025届高考语文复习:散文的结构与行文思路 课件
- 电网调度基本知识课件
- 拉萨市2025届高三第一次联考(一模)语文试卷(含答案解析)
- 《保密法》培训课件
- 回收二手机免责协议书模板
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 2024年智慧工地相关知识考试试题及答案
- GB/T 8005.2-2011铝及铝合金术语第2部分:化学分析
评论
0/150
提交评论