江苏省丹阳中学等三校2025届高二上数学期末监测试题含解析_第1页
江苏省丹阳中学等三校2025届高二上数学期末监测试题含解析_第2页
江苏省丹阳中学等三校2025届高二上数学期末监测试题含解析_第3页
江苏省丹阳中学等三校2025届高二上数学期末监测试题含解析_第4页
江苏省丹阳中学等三校2025届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省丹阳中学等三校2025届高二上数学期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一组“城市平安建设”的满意度测评结果,,…,的平均数为116分,则,,…,,116的()A.平均数变小 B.平均数不变C.标准差不变 D.标准差变大2.圆与圆的位置关系为()A.内切 B.相交C.外切 D.相离3.在平面直角坐标系中,抛物线上点到焦点的距离为3,则焦点到准线的距离为()A. B.C.1 D.4.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.5.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解6.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.7.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人8.命题“存在,”的否定是()A.存在, B.存在,C.对任意, D.对任意,9.函数的最小值为()A. B.1C.2 D.e10.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆 B.椭圆C.双曲线的一支 D.抛物线11.已知数列中,,,是的前n项和,则()A. B.C. D.12.设,随机变量X的分布列如下表所示,随机变量Y满足,则当a在上增大时,关于的表述下列正确的是()X013PabA增大 B.减小C.先增大后减小 D.先减小后增大二、填空题:本题共4小题,每小题5分,共20分。13.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________14.如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.15.已知向量,向量,若,则实数的值为________.16.复数的实部为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,已知,,,,分别为边,的中点,于点.(1)求直线方程;(2)求直线的方程.18.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.19.(12分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.请判断是否为定值,若是,求出该定值;若不是,请说明理由.20.(12分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率21.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和22.(10分)总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元(1)每台充电桩第几年开始获利?(2)每台充电桩在第几年时,年平均利润最大

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用平均数、方差的定义和性质直接求出,,…,,116的平均数、方差从而可得答案.【详解】,,…,的平均数为116分,则,,…,,116的平均数为设,,…,的方差为则所以则,,…,,116的方差为所以,,…,,116的平均数不变,方差变小.标准差变小.故选:B2、C【解析】写出两圆的圆心和半径,求出圆心距,发现与两圆的半径和相等,所以判断两圆外切【详解】圆的标准方程为:,所以圆心坐标为,半径;圆的圆心为,半径,圆心距,所以两圆相外切故选:C3、D【解析】根据给定条件求出抛物线C的焦点、准线,再利用抛物线的定义求出a值计算作答.【详解】抛物线的焦点,准线,依题意,由抛物线定义得,解得,所以抛物线焦点到准线的距离为.故选:D4、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B5、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.6、A【解析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.7、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B8、D【解析】特称命题的否定:将存在改任意并否定原结论,即可知正确答案.【详解】由特称命题的否定为全称命题,知:原命题的否定为:对任意,.故选:D9、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B10、C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆心,半径为,圆x2+y2=1的圆心为,半径为,圆x2+y2﹣8x+12=0,得,则圆心,半径为,根据圆与圆相切,则,,两式相减得,根据定义可得动圆圆心轨迹为双曲线的一支.故选:C【点睛】本题考查了两圆的位置关系,圆锥曲线的定义,属于基础题.11、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.12、A【解析】先求得参数b,再去依次去求、、,即可判断出的单调性.【详解】由得则,由得a在上增大时,增大.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;14、【解析】以为坐标原点建立空间直角坐标系,设出点的坐标,求得△的内心坐标,根据△内心以及关于的对称点三点共线,即可求得点的坐标,则问题得解.【详解】根据题意,以为坐标原点,建立平面直角坐标系,设点关于直线的对称点为,关于轴的对称点为,如下所示:则,不妨设,则直线的方程为,设点坐标为,则,且,整理得,解得,即点,又;设△的内切圆圆心为,则由等面积法可得,解得;故其内心坐标为,由及△的内心三点共线,即,整理得,解得(舍)或,故.故答案为:.15、2【解析】根据,由求解.【详解】因为向量,向量,且,所以,解得,故答案为:216、【解析】复数,其实部为.考点:复数的乘法运算、实部.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件求出点D,E坐标,再求出直线DE方程作答.(2)求出直线AH的斜率,再借助直线的点斜式方程求解作答.【小问1详解】在中,,,,则边中点,边的中点,直线DE斜率,于是得,即,所以直线的方程是:.【小问2详解】依题意,,则直线BC的斜率为,又,因此,直线的斜率为,所以直线的方程为:,即.18、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即19、(1)(2)是定值,定值为【解析】(1)由抛物线的准线求标准方程;(2)直线与抛物线相交求定值,解联立方程消未知数,利用韦达定理,求线段长,再求它们的倒数的平方和.【小问1详解】由题意,可得,即,故抛物线的方程为.【小问2详解】为定值,且定值是.下面给出证明.证明:设直线的方程为,,,联立抛物线有,消去得,则,又,.得因此为定值,且定值是.20、(1)0.05,40;(2)【解析】(1)因为由频率分布直方图可得共五组的频率和为1所以可得一个关于的等式,即可求出的值.再根据已知有4名学生的成绩在9米到11米之间,可以求出本次参加“掷铅球”项目测试的人数.本小题要根据所给的图表及直方图作答,频率的计算易漏乘以组距.(2)因为若此次测试成绩最好的共有4名同学.成绩最差的共有2名同学.所以从6名同学中抽取2名同学共有15中情况,其中两人在同组情况由8中.所以可以计算出所求的概率.试题解析:(Ⅰ)由题意可知解得所以此次测试总人数为答:此次参加“掷铅球”的项目测试的人数为40人(Ⅱ)设从此次测试成绩最好和最差的两组中随机抽取2名学生自不同组的事件为A:由已知,测试成绩在有2人,记为;在有4人,记为.从这6人中随机抽取2人有,共15种情况事件A包括共8种情况.所以答:随机抽取的2名学生自不同组的概率为考点:1.频率分布直方图.2.概率问题.3.列举分类的思想.21、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.22、(1)公司从第3年开始获利;(2)第9年时每台充电桩年平均利润最大3600元【解析】(1)判断已知条件是等差数列,然后求解利润的表达式,推出表达式求解n即可(2)利用基本不等式求解最大值即可【详解】(1)每年的维修保养费用是以1100为首项,400为公差的等差数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论