2025届山东省齐鲁名校数学高二上期末经典模拟试题含解析_第1页
2025届山东省齐鲁名校数学高二上期末经典模拟试题含解析_第2页
2025届山东省齐鲁名校数学高二上期末经典模拟试题含解析_第3页
2025届山东省齐鲁名校数学高二上期末经典模拟试题含解析_第4页
2025届山东省齐鲁名校数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省齐鲁名校数学高二上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或 B.或C.或 D.或2.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.104.等差数列x,,,…的第四项为()A.5 B.6C.7 D.85.在下列函数中,最小值为2的是()A. B.C. D.6.已知直线与圆相离,则以,,为边长的三角形为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不存在7.已知椭圆的离心率为,则()A. B.C. D.8.抛物线的焦点坐标为()A. B.C. D.9.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在10.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.11.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.12.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____14.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.15.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________16.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.18.(12分)已知等差数列前n项和为,,,若对任意的正整数n成立,求实数的取值范围.19.(12分)已知等差数列满足:,(1)求数列的通项公式,以及前n项和公式;(2)若,求数列的前n项和20.(12分)如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面的距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知得集合M表示以点圆心,以2半径左半圆,与y轴的交点为,集合N表示以点为圆心,以r为半径的圆,当圆C与圆O相外切于点P,有且仅有一个元素时,圆C过点M时,有且有两个元素,当圆C过点N,有且仅有一个元素,由此可求得r的取值范围.【详解】解:由得,所以集合M表示以点圆心,以2半径的左半圆,与y轴的交点为,集合表示以点为圆心,以r为半径的圆,如下图所示,当圆C与圆O相外切于点P时,有且仅有一个元素时,此时,当圆C过点M时,有两个元素,此时,所以,当圆C过点N时,有且仅有一个元素,此时,所以,所以当有且仅有一个元素时,则r的取值范围为或,故选:B.2、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.3、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】根据等差数列的定义求出x,求出公差,即可求出第四项.【详解】由题可知,等差数列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四项为-1+(4-1)×2=5.故选:A.5、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C6、A【解析】应用直线与圆的相离关系可得,再由余弦定理及三角形内角的性质即可判断三角形的形状.【详解】由题设,,即,又,所以,且,故以,,为边长的三角形为钝角三角形.故选:A.7、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D8、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C9、C【解析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C10、D【解析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【点睛】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.11、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B12、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示二、填空题:本题共4小题,每小题5分,共20分。13、2036【解析】先用换底公式化简之后,将表示出来,找出满足条件的“幸福数”,然后求和即可.【详解】当时,,所以,若满足正整数,则,即,所以在内的所有“幸福数”的和为:,故答案为:2036.14、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.15、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.16、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,1,,设二面角的平面角为,则,二面角的余弦值为18、【解析】设等差数列的公差为,根据题意得,解方程得,,进而得,故恒成立,再结合二次函数的性质得当或4时,取得最小值,进而得答案.【详解】解:设等差数列的公差为,由已知,.联立方程组,解得,.所以,,由题意,即.令,其图象为开口向上的抛物线,对称轴为,所以当或4时,取得最小值,所以实数的取值范围是.19、(1),(2)【解析】(1)由,,列出方程组,求得,即可求得数列的通项公式,利用公式可得.(2)由(1)求得,结合“裂项法”求和,即可求解.【详解】(1)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式.(2)由(1)知,可得,所以数列的前项和:.【点睛】关键点睛:本题主要考查了等差数列的通项公式的求解,以及“裂项法”求和的应用,解答本题的关键是将的通项裂成两项的差,利用裂项相消求和,属于中档题.20、(Ⅰ)证明见解析(Ⅱ)证明见解析【解析】(Ⅰ)证明和得到平面.(Ⅱ)根据相似得到证明平面.【详解】(Ⅰ)如图,连接.∵底面为菱形,且,∴三角形正三角形.∵为的中点,∴.又∵平面,平面,∴.∵,平面,∴平面.(Ⅱ)连接交于点,连接.∵为的中点,∴在底面中,,∴.∴,∴在三角形中,.又∵平面,平面,∴平面.【点睛】本题考查了线面垂直和线面平行,意在考查学生的空间想象能力和推断能力.21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论