2025届安徽省铜陵市联考数学高二上期末学业质量监测试题含解析_第1页
2025届安徽省铜陵市联考数学高二上期末学业质量监测试题含解析_第2页
2025届安徽省铜陵市联考数学高二上期末学业质量监测试题含解析_第3页
2025届安徽省铜陵市联考数学高二上期末学业质量监测试题含解析_第4页
2025届安徽省铜陵市联考数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省铜陵市联考数学高二上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角为()A.0 B.C. D.2.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或13.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.14.已知等差数列满足,,则()A. B.C. D.5.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.96.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元7.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.8.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形9.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.10.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.11.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°12.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数极值点的个数是______14.已知点P在圆上,已知,,则的最小值为___________.15.已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________16.已知双曲线:的左、右焦点分别为,,为的右支上一点,且,则的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.18.(12分).在直角坐标系中,点,直线的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于A,B两点(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求值19.(12分)已知直线l经过直线,的交点M(1)若直线l与直线平行,求直线l的方程;(2)若直线l与x轴,y轴分别交于A,两点,且M为线段AB的中点,求的面积(其中O为坐标原点)20.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由21.(12分)有1000人参加了某次垃圾分类知识竞赛,从中随机抽取100人,将这100人的此次竞赛的分数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下频率分布直方图.(1)求图中a的值;(2)估计总体1000人中竞赛分数不少于70分的人数;(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数.22.(10分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.2、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.3、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B4、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.5、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B6、B【解析】,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程7、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A8、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题9、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.10、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C11、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.12、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】通过导数判断函数的单调性即可得极值点的情况.【详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.14、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:15、【解析】根据焦点坐标即可得到抛物线的标准方程【详解】因为抛物线的顶点为坐标原点,焦点坐标是,所以,解得,抛物线的标准方程为故答案为:16、【解析】由双曲线定义可得a,代入点P坐标可得b,然后可解.【详解】由题知,故,又点在双曲线上,所以,解得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)确定数列为递增数列,然后由4个数确定等差数列,得通项公式,验证100和102是否为数列中的项得结论;(2)由裂项相消法求和【小问1详解】首先数列是递增数列,当2,4,6为的前三项时,易知此时,100,102都是该数列中的项,不满足题意当,2,6为的前三项时,易知此时,100不是该数列中的项,102是该数列中的项,满足题意所以【小问2详解】因为所以所以.18、(1)曲线的直角坐标方程为,直线的普通方程为;(2).【解析】(1)根据极坐标与直角坐标互化公式,结合加法消元法进行求解即可;(2)利用直线参数方程的意义,结合一元二次方程根与系数关系进行求解即可.小问1详解】由;;【小问2详解】把直线的参数方程代入曲线的直角坐标方程中,得,,因为在直线上,所以,或而,所以.19、(1)(2)4【解析】(1)求出两直线的交点M的坐标,设直线l的方程为代入点M的坐标可得答案;(2)设,,因为为线段AB的中点,可得,由的面积为可得答案.【小问1详解】由,得,所以点M坐标为,因为,则设直线l的方程为,又l过点,代入得,故直线l方程为.【小问2详解】设,,因为为线段AB的中点,则,所以,故,,则的面积为.20、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或21、(1)0.040;(2)750;(3)76.5.【解析】(1)由频率分布直方图的性质列出方程,能求出图中的值;(2)先求出竞赛分数不少于70分的频率,由此能估计总体1000人中竞赛分数不少于70分的人数;(3)由频率分布直方图的性质能估计总体1000人的竞赛分数的平均数【详解】(1)由频率分布直方图得:,解得图中的值为0.040(2)竞赛分数不少于70分的频率为:,估计总体1000人中竞赛分数不少于70分的人数为(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数为:【点睛】本题主要考查频率、频数、平均数的求法,考查频率分布直方图的性质等基础知识,意在考查学生对这些知识的理解掌握水

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论