版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10圆中的最值模型之瓜豆原理(曲线轨迹)动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。【模型解读】模型1、运动轨迹为圆弧模型1-1.如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。模型1-2.如图,△APQ是直角三角形,∠PAQ=90°且AP=kAQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。则动点Q是以M为圆心,MQ为半径的圆。模型1-3.定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。模型1-4.定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。例1.(2023.江苏九年级期中)如图,中,于点是半径为2的上一动点,连结,若是的中点,连结,则长的最大值为()A.3 B. C.4 D.例2.(2023·江苏·九年级专题练习)如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作,且使,连接,则长的最大值为.例3.(2022·江苏南通·校考模拟预测)如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将线段DE绕点D顺时针方向旋转90°并缩短到原来的一半,得到线段DF,连结AF,则AF的最小值是.
例4.如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是A. B.3 C. D.例5.(2023·江苏盐城·九年级统考期中)如图,为的直径,C为上一点,其中,,D为上的动点,连接,取中点M,连接,则线段的最大值为.例5.(2022·河南·二模)如图,正方形中,,,点坐标为,连接,点为边上一个动点,连接,过点作于点,连接,当取最小值时,点的纵坐标为(
)A. B. C. D.例6.(2022秋·江苏盐城·九年级统考阶段练习)如图,四边形中,,,,,平分,边DC、上分别有动点E、F,保持,和相交于点P,则的最小值为.课后专项训练1.(2023秋·河北唐山·九年级统考期末)如图,点是正六边形内一点,,当时,连接,则线段的最小值是(
)
A. B. C.6 D.2.(2023·山东临沂·统考二模)如图,C在以为直径半圆上,,,点D是弧上的一动点,,连接,则的长的最小值是(
)
A. B.1 C. D.3.(2023春·广东·九年级专题练习)如图,正方形中,,点为边上一个动点,连接,点为上一点,且,在上截取点使,交于点,连接,则的最小值为()A. B. C. D.4.(2022·陕西渭南·三模)如图,在矩形ABCD中,,,点E在BC上,且,点M为矩形内一动点,使得,连接AM,则线段AM的最小值为______.5.(2023·安徽合肥·校考一模)如图,在中,,,以为边作等腰直角,连,则的最大值是(
)A. B. C. D.6.(2023春·浙江宁波·九年级校考阶段练习)如图,直径,的夹角为,为上的一个动点(不与点,,,重合).,分别垂直于,,垂足分别为,.若的半径长为,则的长()A.随点运动而变化,最大值为 B.等于C.随点运动而变化,最小值为 D.随点运动而变化,没有最值7.(2023·江苏·九年级专题练习)如图,中,,,则边的最大值为()A. B. C.8 D.8.如图,在中,,,,点在以为直径的半圆上运动,由点运动到点,连接,点是的中点,则点经过的路径长为.9.(2022·江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是______.10.(2022·广东·九年级专题练习)如图,点A,B的坐标分别为为坐标平面内一点,,M为线段的中点,连接,当取最大值时,点M的坐标为__________________.11.(2022·广东·二模)如图,在中,AB是的直径,,AD,BC交于点E,点D为的中点,点G为平面内一动点,且,则AG的最小值为__________.12.(2020·四川成都市·中考真题)如图,在矩形中,,,,分别为,边的中点.动点从点出发沿向点运动,同时,动点从点出发沿向点运动,连接,过点作于点,连接.若点的速度是点的速度的2倍,在点从点运动至点的过程中,线段长度的最大值为_________,线段长度的最小值为_________.13.(2022·江苏无锡·模拟预测)如图,在RtΔABC中,∠ACB=90,AC=6、BC=4,点F为射线CB上一动点,过点C作CM⊥AF于M交AB于E,D是AB的中点,则DM长度的最小值是(
)A. B. C.1 D.-214.(2023·广东深圳·深圳校考模拟预测)如图,在矩形中,,,为边上一动点,为中点,为上一点,,则的最小值为.
15.(2023秋·湖北武汉·九年级校考阶段练习)如图,为等腰直角三角形,,,点为所在平面内一点,,以、为边作平行四边形,则的最小值为.
16.(2023·福建泉州·统考模拟预测)如图,点是正方形的内部一个动点(含边界),且,点在上,,则以下结论:①的最小值为;②的最小值为;③;④的最小值为;正确的是.
17.(2022秋·江苏盐城·九年级统考期中)【实验操作】已知线段BC=2,用量角器作,合作学习小组通过操作、观察、讨论后发现:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),小丽同学画出了符合要求的一条圆弧(图1).(1)请你帮助解决小丽同学提出的问题:①该弧所在圆的半径长为______;②面积的最大值为______;(2)【类比探究】小亮同学所画的角的顶点在图1所示的弓形内部,记为,请你证明;(3)【问题拓展】结合以上探究活动经验,解决新问题:如图2,在平面直角坐标系的第一象限内有一点,过点B作轴,轴,垂足分别为A、C,若点P在线段上滑动(点P可以与点A、B重合),使得的位置有两个,求m的取值范围.18.(2022·北京·中考真题)在平面直角坐标系中,已知点对于点给出如下定义:将点向右或向左平移个单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同(互联网企业)3篇
- 全新无中介2024年度房产买卖合同范本解释3篇
- 二零二四年度版权许可合同:文学作品授权使用与分成协议3篇
- 2024版房产买卖合同解除条件2篇
- 弱电工程2024年度项目融资咨询服务合同2篇
- 食堂面食配送合同
- 2024年度商砼供应商评级与管理合同
- 二零二四年度食堂场地租赁全新合同样本2篇
- 混凝土护坡施工合同
- 2024年度日化品研发合作与专利许可合同
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 2023年12月英语四级真题及答案-第1套
- 药事管理学实践报告总结
- 物理化学实验B智慧树知到课后章节答案2023年下北京科技大学
- GB/T 5005-2010钻井液材料规范
- 无机及分析化学考试题(附答案)
- HXD3C型机车停放制动装置原理与操作
- 《化学毒物伤害院内洗消流程处置专家共识》(2021)要点汇编
- 土建劳务合同范本
- 优质护理与责任护士PPT
评论
0/150
提交评论