版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省渭南市富平县2025届数学高二上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.292.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.43.抛物线的准线方程为()A. B.C. D.4.是等差数列,,,的第()项A.98 B.99C.100 D.1015.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.6.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.7.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.8.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.39.若函数在上为单调增函数,则m的取值范围()A. B.C. D.10.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A. B.C. D.11.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.612.直线在y轴上的截距为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.14.过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为.15.已知数列的前项和为,且满足,若对于任意的,不等式恒成立,则实数的取值范围为____________.16.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求.18.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望19.(12分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.20.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论21.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.22.(10分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题2、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A3、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.4、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C5、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.6、A【解析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【详解】数列,,,和,,,,各自都成等差数列,,,,故选:A7、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.8、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C9、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.10、C【解析】设直角三角形的两条直角边边长分别为,则,根据基本不等式求出的最大值后,可得三角形周长的最大值.【详解】设直角三角形的两条直角边边长分别为,则.因为,所以,所以,当且仅当时,等号成立.故这个直角三角形周长的最大值为故选:C11、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.12、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.14、【解析】双曲线的右焦点为.不妨设所作直线与双曲线的渐近线平行,其方程为,代入求得点的横坐标为,由,得,解之得,(舍去,因为离心率),故双曲线的离心率为.考点:1.双曲线的几何性质;2.直线方程.15、【解析】先求出,然后当时,由,得,两式相减可求出,再验证,从而可得数列为等比数列,进而可求出,再将问题转化为在上恒成立,所以,从而可求出实数的取值范围【详解】当时,,得,当时,由,得,两式相减得,得,满足此式,所以,因为,所以数列是以为公比,为首项的等比数列,所以,所以对于任意的,不等式恒成立,可转化为对于任意的,恒成立,即在上恒成立,所以,解得或,所以实数的取值范围为故答案为:【点睛】关键点点睛:此题考查数列通项公的求法,等比数列求和公式的应用,考查不等式恒成立问题,解题的关键是求出数列的通项公式后求得,再将问题转化为在上恒成立求解即可,考查数学转化思想,属于较难题16、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1280【解析】(1)直接利用等差数列通项公式即可求解;(2)先判断出数列单调性,由,则时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】设数列的公差为,由,可知,∴;【小问2详解】由(1)知,数列为单调递减数列,由,则时,,时,;.18、(1)(2)X01234p期望为.【解析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分布列为:X01234p数学期望为19、(1),(2)2【解析】(1)消参数即可得曲线的普通方程,利用极坐标方程与直角坐标方程之间的转化关系式,从而曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得关于的一元二次方程,由韦达定理得,即可得的值.【小问1详解】由,消去参数,得,即,所以曲线的普通方程为.由,得,即,所以曲线的直角坐标方程为【小问2详解】将代入,整理得,则,令方程的两个根为由韦达定理得,所以.20、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.21、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东司法警官职业学院《汽车工程学A》2023-2024学年第一学期期末试卷
- 广东轻工职业技术学院《电视画面编辑》2023-2024学年第一学期期末试卷
- 广东南华工商职业学院《现代生物制药工程原理》2023-2024学年第一学期期末试卷
- 广东茂名健康职业学院《工程测量》2023-2024学年第一学期期末试卷
- 上海教育版英语八年级下册Module 3 Unit 6 单元基础过关课后作业课件
- 七年级语文上册教学工作计划概览
- 教育与发展:五年级数学教学的新思路
- 《回顾2023-迈向光辉未来-班主任工作总结》
- 【名师一号】2021年新课标版历史必修1-单元检测-第二单元
- 学院合同签署授权书
- 市政道路及综合管网工程施工组织设计
- 09J801民用建筑工程建筑施工图设计深度图样
- JGJ/T235-2011建筑外墙防水工程技术规程
- DL∕T 1315-2013 电力工程接地装置用放热焊剂技术条件
- 曼娜回忆录完整版三篇
- 残疾军人新退休政策
- 青岛市平度市2022-2023学年七年级上学期期末地理试题
- 渔业资源基本术语-编制说明
- 抖音小店客服管理制度及考核机制
- 中医优势病种优化方案及总结
- 2021-2022学年贵州省贵阳市花溪区人教版五年级上册期末测试数学试卷
评论
0/150
提交评论