版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省巢湖第一中学高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知数列满足,令是数列的前n项积,,现给出下列四个结论:①;②为单调递增的等比数列;③当时,取得最大值;④当时,取得最大值其中所有正确结论的编号为()A.②④ B.①③C.②③④ D.①③④3.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.144.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg5.在四棱锥中,四边形为菱形,平面,是中点,下列叙述正确的是()A.平面 B.平面C.平面平面 D.平面平面6.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么7.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.128.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种9.已知满约束条件,则的最大值为()A.0 B.1C.2 D.310.若向量则()A. B.3C. D.11.若球的半径为,一个截面圆的面积是,则球心到截面圆心的距离是()A. B.C. D.12.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为1二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.14.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______15.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______16.已知、均为正实数,且,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大18.(12分)已知抛物线,直线交于、两点,且当时,.(1)求的值;(2)如图,抛物线在、两点处的切线分别与轴交于、,和交于,.证明:存在实数,使得.19.(12分)在平面直角坐标系中,已知,动点M满足(1)求M的轨迹方程;(2)设,点N是的中点,求点N的轨迹方程;(3)设M的轨迹与N的轨迹的交点为P、Q,求20.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值21.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.22.(10分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因但2、B【解析】求出,即可判断选项①正确;求出,即可选项②错误;求出,利用单调性即可判断选项③正确;求出,即可判断选项④错误,即得解.【详解】解:因为,①所以,,②①②得,,整理得,又,满足上式,所以,因为,所以数列为等差数列,公差为,所以,故①正确;,因为,故数列为等比数列,其中首项,公比为的等比数列,因为,,所以数列为递减的等比数列,故②错误;,因为为单调递增函数,所以当最大时,有最大值,因为,所以时,最大,即时,取得最大值,故③正确;设,由可得,,解得或,又因为,所以时,取得最大值,故④错误;故选:B3、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.4、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D5、D【解析】利用反证法可判断A选项;利用面面垂直的性质可判断BC选项;利用面面垂直的判定可判断D选项.【详解】对于A选项,因为四边形为菱形,则,平面,平面,平面,若平面,因为,则平面平面,事实上,平面与平面相交,假设不成立,A错;对于B选项,过点在平面内作,垂足为点,平面,平面,则,,,平面,而过作平面的垂线,有且只有一条,故与平面不垂直,B错;对于C选项,过点在平面内作,垂足为点,因为平面,平面,则,,,则平面,若平面平面,过点在平面内作,垂足为点,因为平面平面,平面平面,平面,平面,而过点作平面的垂线,有且只有一条,即、重合,所以,平面平面,所以,,但四边形为菱形,、不一定垂直,C错;对于D选项,因为四边形为菱形,则,平面,平面,,,平面,因为平面,因此,平面平面平面,D对.故选:D.6、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C7、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B8、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.9、B【解析】作出给定不等式表示的平面区域,再借助几何意义即可求出的最大值.【详解】画出不等式组表示的平面区域,如图中阴影,其中,,目标函数,即表示斜率为2,纵截距为的平行直线系,作出直线,平移直线到直线,使其过点A时,的纵截距最小,最大,则,所以的最大值为1.故选:B10、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D11、C【解析】由题意可解出截面圆的半径,然后利用勾股定理求解球心与截面圆圆心的距离【详解】由截面圆的面积为可知,截面圆的半径为,则球心到截面圆心的距离为故选:C【点睛】解答本题的关键点在于,球心与截面圆圆心的连线垂直于截面12、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.14、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:15、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,16、【解析】由基本不等式可得出关于的不等式,即可解得的最小值.【详解】因、均为正实数,由基本不等式可得,整理可得,,,则,解得,当且仅当时,即当时,等号成立,故的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)V(r)=(300r﹣4r3)(0,5)(2)见解析【解析】(1)先由圆柱的侧面积及底面积计算公式计算出侧面积及底面积,进而得出总造价,依条件得等式,从中算出,进而可计算,再由可得;(2)通过求导,求出函数在内的极值点,由导数的正负确定函数的单调性,进而得出取得最大值时的值.(1)∵蓄水池的侧面积的建造成本为元,底面积成本为元∴蓄水池的总建造成本为元所以即∴∴又由可得故函数的定义域为(2)由(1)中,可得()令,则∴当时,,函数为增函数当,函数为减函数所以当时该蓄水池的体积最大考点:1.函数的应用问题;2.函数的单调性与导数;2.函数的最值与导数.18、(1);(2)证明见解析.【解析】(1)将代入抛物线的方程,列出韦达定理,利用弦长公式可得出关于的等式,即可解得正数的值;(2)将代入,列出韦达定理,求出两切线方程,进而可求得点的坐标,分、两种情况讨论,在时,推导出、、重合,可得出;在时,求出的中点的坐标,利用斜率关系可得出,结合平面向量的线性运算可证得结论成立.【小问1详解】解:将代入得,设、,则,由韦达定理可得,则,解得或(舍),故.【小问2详解】解:将代入中得,设、,则,由韦达定理可得,对求导得,则抛物线在点处的切线方程为,即,①同理抛物线在点处的切线方程为,②联立①②得,所以,所以点的坐标为,当时,即切线与交于轴上一点,此时、、重合,由,则,又,则存在使得成立;当时,切线与轴交于点,切线与轴交于点,由,得的中点,由得,即,又,所以,所以,,又,所以存在实数使得成立.综上,命题成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.19、(1)(2)(3)【解析】(1)设,根据向量数量积求解即可得答案;(2)设,,进而根据相关点法求解即可;(3)根据题意得弦由两圆相交得,进而根据几何法弦长即可得答案.【小问1详解】解:设,则,所以,即所以M的轨迹方程为.【小问2详解】解:设,,因为点N是的中点,所以,即,又因为在上,所以,即.所以点N的轨迹方程为.【小问3详解】解:因为M的轨迹与N的轨迹分别为,,是两个圆.所以两个方程作差得直线所在的方程,所以圆到:的距离为,所以20、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融服务客户意见收集制度
- 汽车组装车间员工岗位职责制度
- 托幼机构消毒培训制度
- 实验室个人防护制度流程
- 康复医学科质量控制制度
- 职业安全和健康管理制度
- 旅游培训与推广合同
- 泌尿外科护理管理制度
- 化工行业安全设备采购制度
- 幼儿园薪资调整与福利制度
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- 二年级数学上册100道口算题大全 (每日一套共26套)
- 六盘水事业单位笔试真题及答案2024
- 车辆换行驶证委托书
- 2024年电大考试资源与运营管理试题及答案
- 2025高考数学一轮复习-7.6-利用空间向量求空间角、距离【课件】
- 中国心力衰竭诊断和治疗指南2024解读
- 危重患者气道管理
- 探索·鄱阳湖智慧树知到期末考试答案章节答案2024年江西师范大学
- 2024年天津城市运营发展有限公司招聘笔试冲刺题(带答案解析)
- B737NG 机型执照试题集
评论
0/150
提交评论