版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届青海西宁市普通高中高二上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.2.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.3.已知函数,则曲线在点处的切线方程为()A. B.C. D.4.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④5.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=06.已知函数在处取得极小值,则()A. B.C. D.7.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.8.已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A. B.C. D.9.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.10.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.1011.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.12.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.14.设点是双曲线上的一点,、分别是双曲线的左、右焦点,已知,且,则双曲线的离心率为________15.已知在四面体ABCD中,,,则______16.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.18.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程19.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.20.(12分)在等差数列中,,(1)求的通项公式;(2)设,求数列的前项和21.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值22.(10分)已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A2、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.3、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A4、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C5、B【解析】由题意,,所以,即,故选B6、A【解析】由导数与极值与最值的关系,列式求实数的值.【详解】由条件可知,,,解得:,,检验,时,当,得或,函数的单调递增区间是和,当,得,所以函数的单调递减区间是,所以当时,函数取得极小值,满足条件.所以.故选:A7、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A8、A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.9、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.10、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C11、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.12、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:14、【解析】由双曲线的定义可求得、,利用勾股定理可得出关于、的齐次等式,进而可求得该双曲线的离心率.【详解】由双曲线定义可得,故,由勾股定理可得,即,可得,因此,该双曲线的离心率为.故答案为:.15、24【解析】由线段的空间关系有,应用向量数量积的运算律及已知条件即可求.【详解】由题设,可得如下四面体示意图,则,又,,所以.故答案为:2416、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到女学生的人数X可能为0,1,2,3,分别求得其概率,列出分布列,再求期望.【小问1详解】解:因为初一共有700名学生其中男生400名、女生300名,且有的男学生和的女学生,所以愿意参加体育类活动的男生有300名,女生有200名,则列联表如下:愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生300100400女学生200100300合计500200700,所以有的把握认为愿意参加体育类活动与学生的性别相关;【小问2详解】这7名学生中男生有4名,女生有3名,随机选择3名学生进行展示,抽到女学生的人数X可能为0,1,2,3,所以,,所以随机变量X分布列如下:X0123p18、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或19、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.20、(1);(2).【解析】(1)根据等差数列的通项公式求解;(2)运用裂项相消法求数列的和.详解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【点睛】本题考查等差数列的通项公式和裂项相消法求数列的和.21、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.22、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版高科技产品出口许可与合同履行协议3篇
- 二零二五版国际贸易合同担保法风险管理合同3篇
- 碎石加工设备2025年度保险合同2篇
- 二零二五版企业员工劳务派遣与员工福利保障合同3篇
- 二零二五年度粮食储备与农业产业化合作合同3篇
- 二零二五年度高层综合楼公共收益分配管理合同3篇
- 二零二五年度校车运营服务与儿童座椅安全检测合同3篇
- 二零二五版带储藏室装修包售二手房合同范本3篇
- 二零二五年房地产合作开发与股权让渡综合合同2篇
- 二零二五年度花木种植与生态农业园区建设合同3篇
- 毕淑敏心理咨询手记在线阅读
- 亚硝酸钠安全标签
- pcs-985ts-x说明书国内中文版
- GB 11887-2012首饰贵金属纯度的规定及命名方法
- 小品《天宫贺岁》台词剧本手稿
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
评论
0/150
提交评论