版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省池州市青阳县第一中学高考终极猜想:数学试题最后一卷名师猜题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.2.若复数z满足,则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.4.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.35.已知等比数列满足,,则()A. B. C. D.6.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.87.已知向量,,则向量与的夹角为()A. B. C. D.8.已知函数,则函数的零点所在区间为()A. B. C. D.9.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.10.已知复数,为的共轭复数,则()A. B. C. D.11.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或12.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.14.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________.15.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.16.在中,已知,则的最小值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,(其中).(1)求;(2)求证:当时,.18.(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、、满足,求证:.19.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的:①根据上表数据计算的值;②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.20.(12分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.21.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.22.(10分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
对选项逐个验证即得答案.【详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.【点睛】本题考查函数的基本性质,属于基础题.2.A【解析】
化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.3.D【解析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.4.C【解析】
否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.5.B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.6.A【解析】
先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.7.C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.8.A【解析】
首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.9.A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.10.C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.11.A【解析】
利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.12.D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,,,,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于基础题.14.【解析】
根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率.【详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:.【点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.15.或【解析】
设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.16.【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)见解析【解析】
(1)取,则;取,则,∴;(2)要证,只需证,当时,;假设当时,结论成立,即,两边同乘以3得:而∴,即时结论也成立,∴当时,成立.综上原不等式获证.18.(1)(2)证明见解析【解析】
(1)采用零点分段法:、、,由此求解出不等式的解集;(2)先根据绝对值不等式的几何意义求解出的值,然后利用基本不等式及其变形完成证明.【详解】(1)当时,不等式为,解得当时,不等式为,解得当时,不等式为,解得∴原不等式的解集为(2)当且仅当即时取等号,∴,∴∵,∴,∴(当且仅当时取“”)同理可得,∴∴(当且仅当时取“”)【点睛】本题考查绝对值不等式的解法以及利用基本不等式证明不等式,难度一般.(1)常见的绝对值不等式解法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明时,注意说明取等号的条件.19.(1)列联表见解析,有把握;(2)①;②元时【解析】
(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)①代入表中数据,结合公式求出;②由①中所得的线性回归方程,若售价为,单价利润为,日销售量为,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精英店与采用促销活动有关”.(2)①由公式可得:所以回归方程为②若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.20.见解析【解析】
(1)当时,函数,其定义域为,则,设,,易知函数在上单调递增,且,所以当时,,即;当时,,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值.(2)由题可得函数的定义域为,,设,,显然函数在上单调递增,当时,,,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,,,所以函数有且仅有一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肛周瘙痒症的临床护理
- 八年级英语EnviromentWriting课件
- JJF(陕) 051-2021 机动车 GNSS 区间测速监测系统标准装置校准规范
- JJF(陕) 004-2019 水泥胶砂流动度测定仪校准规范
- 人事风险管理的应对策略计划
- 校园文化与美术教育互动探讨计划
- 适应变化的职场策略计划
- 零仓储模式下的保安管理与风险防控计划
- 生物学科英语融合教学方案计划
- 艺术与科技融合课程的前景分析计划
- Unit1Topic1考点梳理课件八年级英语上册
- 陕西省西安市周至县2025届初三中考测试(一)数学试题理试题含解析
- 附件1:肿瘤防治中心评审实施细则2024年修订版
- 【《电子商务企业审计风险探究-以京东为例》11000字(论文)】
- 国债项目资金管理办法
- 职业技术学校云计算技术应用专业人才需求调研分析报告
- 2023年7月辽宁省高中学业水平合格考语文试卷真题(含答案详解)
- 跨学科主题-探索外来食料作物传播史课件-2024-2025学年七年级地理上学期(2024)人教版
- 《红楼梦》十二讲智慧树知到期末考试答案章节答案2024年安徽师范大学
- 敦煌的艺术智慧树知到期末考试答案章节答案2024年北京大学
- 项目介绍书范文
评论
0/150
提交评论