2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】_第1页
2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】_第2页
2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】_第3页
2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】_第4页
2025届甘肃省武威第九中学九上数学开学学业质量监测试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届甘肃省武威第九中学九上数学开学学业质量监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)当x为下列何值时,二次根式有意义()A. B. C. D.2、(4分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=40°,则∠BDC=()A.40° B.80° C.100° D.120°3、(4分)已知四边形ABCD,有以下四个条件:①AB∥CD;②BC∥AD;③ABCD;④ABCADC.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法有()A.3种 B.4种 C.5种 D.6种4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE5、(4分)如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE6、(4分)16的值是()A.±4 B.4 C.﹣4 D.±27、(4分)关于的不等式组恰好有四个整数解,那么的取值范围是()A. B. C. D.8、(4分)下列式子是分式的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.10、(4分)一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.11、(4分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.12、(4分)已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.13、(4分)已知关于的方程有解,则的值为____________.三、解答题(本大题共5个小题,共48分)14、(12分)文具商店里的画夹每个定价为20元,水彩每盒5元,其制定两种优惠办法:①买一个面夹赠送一盒水彩;②按总价的92%付款.一美术教师欲购买画夹4个,水彩若干盒(不少于4盒),设购买水彩x盒,付款y元.(1)试分别建立两种优惠办法中y与x的函数关系式;(2)美术老师购买水彩30盒,通过计算说明那种方法更省钱.15、(8分)如图,在等腰△ABC中,∠CAB=90°,P是△ABC内一点,PA=1,PB=3,PC=,将△APB绕点A逆时针旋转后与△AQC重合.求:(1)线段PQ的长;(2)∠APC的度数.16、(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.17、(10分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.18、(10分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.

(1)探究与的数量关系并加以证明;

(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;

(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______20、(4分)若最简二次根式和是同类二次根式,则______.21、(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.22、(4分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式_____.23、(4分)苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.二、解答题(本大题共3个小题,共30分)24、(8分)计算:(1)(2)()()25、(10分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为的比例计入每人的最后总分,有4位应聘者的得分如下所示:项目得分应聘者专业知识英语水平参加社会实践与社团活动等A858590B858570C809070D809050(1)写出4位应聘者的总分;(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?26、(12分)小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.(1)请你在图1,图2依次画出分割线,并简要说明画法;(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【详解】由题意得,2-x≥0,解得,故选:C.本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2、B【解析】

根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=40°,∴∠BDC=∠DCA+∠A=80°,故选:B.本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、B【解析】

从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④,然后按照平行四边形的判定方法逐一判断即可.【详解】解:从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④;具备①②时,四边形ABCD满足两组对边分别平行,是平行四边形;具备①③时,四边形ABCD满足一组对边平行且相等,是平行四边形;具备①④时,如图,∵AB∥CD,∴ABC+C=180°.∵ABCADC,∴ADC+C=180°.∴AD∥CB.所以四边形ABCD是平行四边形;具备②③时,等腰梯形就符合一组对边平行,另一组对边相等,但它不是平行四边形,故具备②③时,不能判断是否是平行四边形;具备②④时,类似于上述①④,可以证明四边形ABCD是平行四边形;具备③④时,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E;在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC.把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合.显然四边形ABC'D'满足:AB=CD=C'D';∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形.综上,从四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有4种.故选B.此题主要考查了平行四边形的判定方法,平行四边形的判定方法主要有:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.在具体应用时,要注意灵活选用.4、D【解析】

首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.【详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选D.此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.5、B【解析】

首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.6、B【解析】

由于16表示16的算术平方根,所以根据算术平方根的定义即可得到结果.【详解】∵4∴16故选:B.本题主要考查算术平方根的定义,一个非0数的算术平方根是正数,算术平方根容易与平方根混淆,学习中一定要熟练区分之.7、C【解析】

可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.【详解】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴-1≤m<0,故选C.本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.8、B【解析】

根据分母中含有字母的式子是分式,可得答案.【详解】解:是分式,故选:B.本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.二、填空题(本大题共5个小题,每小题4分,共20分)9、1或2【解析】

分三种情形分别讨论求解即可解决问题;【详解】情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴四边形ABCD是矩形,∴四边形ABCD的面积=1.情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.∵AH2=AB2-BH2=AC2-CH2,∴62-(x-8)2=122-x2,∴x=,∴AH=,∴四边形ABCD的面积=8×=2.情形3:当AB=OB时,四边形ABCD的面积与情形2相同.综上所述,四边形ABCD的面积为1或2.故答案为1或2.本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.10、-2<m<1【解析】

解:由已知得:,解得:-2<m<1.故答案为:-2<m<1.11、1【解析】

首先证明OE=BC,再由AE+EO=4,推出AB+BC=8,然后计算周长即可解答.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=1,故答案为:1.本题考查了平行四边形的性质、三角形中位线定理,熟练掌握是解题的关键.12、1【解析】

方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.【详解】由题意知,设原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,

则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,

现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]

=[(x1-)1+(x1-)1+…+(x5-)1]=1,

所以方差不变.

故答案为1.本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.13、1【解析】

分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.【详解】去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.故答案为:1.本题考查了分式方程的解,始终注意分母不为0这个条件.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)①更省钱.【解析】

(1)根据题意可以得到y甲、y乙与乒乓球盒数x之间的函数关系式;(2)将x=30分别代入(1)中的两个函数关系式,然后进行比较,即可解答本题.【详解】(1)两种优惠办法中y与x的函数关系式分别为:①y=20×4+(x-4)×5=5x+60,②y=(20×4+5x)×92%=4.6x+73.6;(2)当x=30时,y=20×4+(x-4)×5=20×4+(30-4)×5=210(元),y=(20×4+5x)×92%=(20×4+5×30)×92%=211.6元,∴办法①更省钱.本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.15、(1);(2)135°【解析】

(1)由性质性质得,AQ=AP=1,∠QAP=∠CAB=90°,由勾股定理得,PQ=.(2)由∠QAP=90°,AQ=AP,得∠APQ=45°,根据勾股定理逆定理得∠CPQ=90°,所以,∠APC=∠CPQ+∠APQ=135°.【详解】解:(1)∵△APB绕点A旋转与△AQC重合,∴AQ=AP=1,∠QAP=∠CAB=90°,∴在Rt△APQ中,PQ=.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=,CQ=3,CP=,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.本题考核知识点:旋转性质和勾股定理.解题关键点:熟记旋转性质和勾股定理.16、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】

(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.17、(1)见解析;(2)6【解析】

(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;

(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,,再根据△ABD的面积=进行计算即可.【详解】解:(1)如图,过D作DE⊥AB于E,

∵∠C=90°,AD是△ABC的角平分线,

∴DE=CD,

又∵∠B=30°,

∴Rt△BDE中,DE=BD,

∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,

∴∠BAD=∠B=30°,

∴AD=BD=2CD=4,

∴Rt△ACD中,AC=,∴△ABD的面积为.本题主要考查了直角三角形的性质以及勾股定理的运用,利用角平分线的的性质是解决问题的关键.18、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】

(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;

(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;

(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.【详解】(1)OE=OF,理由如下:

∵MN∥BC,

∴∠OEC=∠BCE,∠OFC=∠DCF,

∵CE平分∠BCA,CF平分∠ACD,

∴∠OCE=∠BCE,∠OCF=∠DCF,

∴∠OCE=∠OEC,∠OCF=∠OFC,

∴OE=OC,OF=OC,

∴OE=OF;

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.

∵当点O运动到AC的中点时,AO=CO,

又EO=FO,

∴四边形AECF为平行四边形,

又CE为∠ACB的平分线,CF为∠ACD的平分线,

∴∠BCE=∠ACE,∠ACF=∠DCF,

∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,

即∠ECF=90°,

∴四边形AECF是矩形;

(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:

∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,

∵MN∥BC,

当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,

∴AC⊥EF,

∴四边形AECF是正方形.此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰三角形的判定、平行线的性质以及角平分线的定义,解题关键在于掌握各判定定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.【详解】解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,

∵AC=56,∠PCA=30°,由对称性可知:BF=AE,

∴通过闸机的物体最大宽度为2AE+AB=56+10=66;

故答案为:66cm.本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.20、4【解析】

根据被开方数相同列式计算即可.【详解】∵最简二次根式和是同类二次根式,∴a-1=11-2a,∴a=4.故答案为:4.本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.21、1【解析】

根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=1.故答案为1.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.22、【解析】如图所示:连接OB、AC相交于点E(3,1),过点E、M作直线EM,则直线EM即为所求的直线设直线EM的解析式为y=kx+b,把E、M两点坐标代入y=kx+b中,得解得所以直线的函数表达式:y=2x-5.故答案是:y=2x-5.【点睛】此题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标,过点E和点M作直线EM,再用待定系数法求直线的解析式即可.23、32【解析】

根据极差的定义进行求解即可得答案.【详解】这组数据的最大值是36,最小值是25,这组数据的极差是:36﹣25=1(℃),故答案为1.本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.二、解答题(本大题共3个小题,共30分)24、(1);(2)【解析】

(1)直接化简二次根式进而计算得出答案;

(2)直接利用二次根式的乘法运算法则计算得出答案.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论