版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.2、(4分)下列计算错误的是()A.=2 B.=3 C.÷=3 D.=1﹣=3、(4分)若点P(a,b)是正比例函数y=-2A.2a+3b=0 B.2a-3b=0 C.3a+2b=0 D.3a-2b=04、(4分)如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是()A.35cm2 B.40cm2 C.45cm2 D.50cm25、(4分)百货商场试销一批新款衬衫,一周内销售情况如表所示,商场经理想要了解哪种型号最畅销,那么他最关注的统计量是(
)
型号(厘米)383940414243数量(件)23313548298A.平均数 B.中位数 C.众数 D.方差6、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是()A.平均数为0 B.中位数为1 C.众数为2 D.方差为347、(4分)如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm8、(4分)一次函数y=-3x+m的图象经过点P-2,3,且与x轴,y轴分别交于点A、B,则△AOBA.12 B.1 C.32二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一组数据4,,6,9,12的众数为6,则这组数据的中位数为_________.10、(4分)有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.11、(4分)在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.12、(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.13、(4分)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________三、解答题(本大题共5个小题,共48分)14、(12分)(1)先列表,再画出函数的图象.(2)若直线向下平移了1个单位长度,直接写出平移后的直线表达式.15、(8分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.16、(8分)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.17、(10分)如图,反比例函数y1=与一次函数y2=mx+n相交于A(﹣1,2),B(4,a)两点,AE⊥y轴于点E,则:(1)求反比例函数与一次函数的解析式;(2)若y1≤y2则直接写出x的取值范围;(3)若M为反比例函数上第四象限内的一个动点,若满足S△ABM=S△AOB,则求点M的坐标.18、(10分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知方程的一个根为,则常数__________.20、(4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)22、(4分)已知整数x、y满足+3=,则的值是______.23、(4分)如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=_____,照此规律操作下去…则AnM=_____.二、解答题(本大题共3个小题,共30分)24、(8分)在▱ABCD中,E、F是DB上的两点,且AE∥CF,若∠AEB=115∘,∠ADB=35∘25、(10分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.求证:.26、(12分)计算:.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.2、D【解析】分析:根据二次根式的化简及计算法则即可得出答案.详解:A、=2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.3、A【解析】
由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数y=-2∴b=-2∴2a+3b=0.故选A本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.4、C【解析】
依据图形可发现菱形ABCD与菱形RESF相似,连接RS交EF与点O,可求得它们的相似比=OE:OB,然后依据面积比等于相似比的平方求解即可.【详解】连接RS,RS交EF与点O.
由图形的对称性可知RESF为菱形,且菱形ABCD与菱形RESF相似,
∴OE=OF.
∴OB=3OE,
∴,
∴菱形ABCD的面积=5×9=45cm1.
故选:C.本题主要考查的是菱形的性质,掌握求得两个菱形的相似比是解题的关键.5、C【解析】分析:商场经理要了解哪些型号最畅销,即所卖出的量最大,一组数据中出现次数最多的数字是众数,所以商场经理注的统计量为众数.详解:因为商场经理要了解哪种型号最畅销,即哪种型号卖出最多,也即哪个型号出现的次数最多,这个用众数表示.故选C.点睛:本题主要考查数据集中趋势中的平均数、众数、中位数在实际问题中的正确应用,理解平均数、众数、中位数的意义是解题关键.6、D【解析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.【详解】A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;D.s2=所以选D本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.7、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.8、C【解析】
由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.【详解】解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,∴m=−3∴一次函数关系式为y=−3x−3,当x=0时,y=−3;当y=0是,x=−1;∴OA=1,OB=3,∴S△AOB=12×1×3=3故选:C.考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据众数的定义求出x,然后根据中位数的概念求解.【详解】解:∵数据4,x,1,9,12的众数为1,∴x=1,则数据重新排列为4,1,1,9,12,所以中位数为1,故答案为:1.本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10、5.4×【解析】
绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000054这个数用科学记数法表示为5.4×10故答案为:5.4×考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.11、105°或45°【解析】
根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E在BD右侧时,点E在BD左侧时,分别求出答案即可.【详解】∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠C=∠ABC=∠ADC=150°,∴∠ABD=∠DBC=75°,∵EB=ED,∠DEB=120°,∴∠EBD=∠EDB=30°,当点E在DB左侧时,∠EBC=∠EBD+∠CBD=105°,当点在DB右侧时,∠BC=∠CBD-∠BD=45°,故答案为:105°或45°.此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.12、1【解析】
根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.【详解】解:如图:
由题意得:AB=AC=10cm,BC=11cm,
作AD⊥BC于点D,则有DB=BC=8cm,
在Rt△ABD中,AD==1cm.
故答案为1.本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.13、L【解析】
由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.【详解】前4分钟的每分钟的进水量为20÷4=5,每分钟的出水量为5-(30-20)÷8=.故答案为L.从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)【解析】
(1)先列好表,再描点并连线即可,(2)根据函数图像上下平移规律:上加下减,即可得到答案.【详解】解:(1)列表如下:描点并连线:(2)直线向下平移了1个单位长度得到.本题考查的是一次函数的作图及上下平移,掌握以上知识是解题的关键.15、AC=2【解析】
可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AD·AB,∴AC2=12,∴AC=2(负值舍去)本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.16、(1)证明见解析(2)菱形【解析】分析:(1)根据正方形的性质和全等三角形的判定证明即可;
(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明:(1)∵四边形ABCD是正方形,
∴AB=AD,
∴∠ABD=∠ADB,
∴∠ABE=∠ADF,
在△ABE与△ADF中
,
∴△ABE≌△ADF.
(2)如图,连接AC,
四边形AECF是菱形.
理由:在正方形ABCD中,
OA=OC,OB=OD,AC⊥EF,
∴OB+BE=OD+DF,
即OE=OF,
∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴四边形AECF是菱形.点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.17、(1),;(2)x≤﹣1或0<x≤1;(3)点M的坐标(2,﹣1)或(3+,).【解析】
(1)先将点A代入反比例函数解析式中即可求出反比例函数的解析式,然后根据反比例函数的解析式求出点B的坐标,再利用待定系数法即可求出一次函数的解析式;(2)根据图象及两个函数的交点即可得出x的取值范围;(3)先求出一次函数与y轴的交点坐标,然后利用S△ABM=S△AOB和平移的相关知识分两种情况:向上平移或向下平移两种情况,分别求出平移后的直线与反比例函数在第四象限的交点即可.【详解】(1)把A(﹣1,2)代入反比例函数得,k=﹣2∴反比例函数的关系式为,把B(1,a)代入得,,∴B(1,)把A(﹣1,2),B(1,)代入一次函数得,解得∴一次函数的关系式为:(2)当时,反比例函数的图象在一次函数图象的下方,结合图象可知,当,自变量x的取值范围为:x≤﹣1或0<x≤1.(3)当时,∴与y轴的交点坐标为(0,),如图:∵S△ABM=S△AOB∴根据平行线间的距离处处相等,可将一次函数进行平移个单位,则平移后的直线与反比例函数在第四象限的交点即为所求的M点.将向下平移个单位过O点,关系式为:,解得,∵M在第四象限,∴M(2,﹣1),将向上平移个单位后直线的关系式为:,解得,∵M在第四象限,∴,综上所述,点M的坐标(2,﹣1)或,本题主要考查反比例函数,一次函数与几何综合,掌握待定系数法及平移的相关知识和二元一次方程组的解法是解题的关键.18、(1)详见解析;(1)CD=1.【解析】
(1)根据相似三角形的判定得出即可;(1)根据相似得出比例式,代入求出即可.【详解】证明:(1)∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC;(1)∵△BDC∽△ABC,∴,∴,∴CD=1.考核知识点:相似三角形的判定和性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
将x=2代入方程,即可求出k的值.【详解】解:将x=2代入方程得:,解得k=.本题考查了一元二次方程的解,理解方程的解是方程成立的未知数的值是解答本题的关键20、(21008,21009).【解析】观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008),即A2017(21008,21009).故答案为(21008,21009).【点睛】本题主要考查一次函数图象中点的坐标特征以及规律问题中点的坐标变化特征,解题的关键是找出变化规律A2n+1((﹣2)n,2(﹣2)n)(n为自然数).解决时的关键是要先写出一些点的坐标,根据坐标的特征找出变化的规律.21、甲【解析】
根据方差的定义,方差越小数据越稳定.【详解】解:∵S甲2=0.18,S乙2=0.32,
∴S甲2<S乙2,
∴身高较整齐的球队是甲;
故答案为:甲.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、6或2或2【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.【详解】∵+3==6,又x、y均为整数,∴=,3=0或=3,3=3或=0,3=,∴x=72,y=0或x=18,y=2或x=0,y=8,∴=6或2或2.故答案为:6或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024某广告公司与某品牌之间的2024年度广告投放合同
- 2024年餐馆老板与厨师协议3篇
- 2024年采购合同:医疗设备购买与技术支持服务
- 2024性格不合离婚协议书-夫妻情感修复方案3篇
- 2024技术服务与支持协议版A版
- 2024年新款智能IC卡供应合同合同范本版B版
- 2024文艺演出合同模板:网络直播文艺表演合作协议3篇
- 2024年装修工程清包劳动力服务协议一
- 2024年版招标协议部门工作职责明细版B版
- 2024年研究报告修改与完善协议
- 数学-2025年高考综合改革适应性演练(八省联考)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之10:“5领导作用-5.4创新文化”(雷泽佳编制-2025B0)
- 2024版定制家具生产与知识产权保护合同范本2篇
- 智能制造能力成熟度模型(-CMMM-)介绍及评估方法分享
- 2024年个人总结、公司规划与目标
- 市场营销试题(含参考答案)
- 景区旅游安全风险评估报告
- 2023年新高考(新课标)全国2卷数学试题真题(含答案解析)
- 事业单位工作人员奖励审批表
- 眼科护理的国内外发展动态和趋势
- 2024年中煤平朔集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论