版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(﹣a,b),如f(1,2)=(﹣1,2);g(a,b)=(b,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=()A.(5,﹣9) B.(﹣5,﹣9) C.(﹣9,﹣5) D.(﹣9,5)2.如图所示在平面直角坐标系中,一个动点从原点出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点,,,,,则点的坐标是()A. B. C. D.3.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.154.在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,其对应的点坐标依次为,,,,,,,…,根据这个规律,第2018个横坐标为()A.44 B.45 C.46 D.475.如图,已知正方形ABCD,定点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2015,2) B.(-2015,-2) C.(-2016,-2) D.(-2016,2)6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9) B.(45,13) C.(45,22) D.(45,0)7.在平面直角坐标系中,任意两点A(,),B(,),规定运算:①A⊕B=(,);②A⊗B=;③当且时,A=B,有下列四个命题:(1)若A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数为()A.1个 B.2个 C.3个 D.4个8.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是()A.﹣5 B.3 C.﹣1 D.59.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是()A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0)10.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点Pn(xn,yn),n=1,2,3,…,则x1+x2+x3+…+x2021=()A.1 B.﹣1010 C.1011 D.2021二、填空题11.定义:动点先向右平移,再向上平移相同单位长度为完成一次移动,平移的相同单位长度称为移动的距离.如图,在平面直角坐标系中,若点从原点出发,第一次移动的距离为4个单位长度到达点,以后每一次移动的距离都是前一次移动距离的一半,则经过无数次移动后,点最终接近的那个点的坐标为______.12.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).将△OAB进行n次变换得到△OAnBn,则An(___,__),Bn(_____,_____).13.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下,向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,A1(0,1),A2(1,1),A3(1,0)写出点A101的坐标_____.14.如图,一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第2019秒时这个点所在位置的坐标是_____.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.16.如图,动点P从坐标原点出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点,第2秒运动到点,第3秒运动到点,第4秒运动到点…则第2068秒点P所在位置的坐标是_______________.17.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…An;…,则A2018的坐标为___________.18.在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.点M的坐标为(,1),点N是坐标轴的负半轴上的一个动点,当四边形ABOM的面积与三角形ABN的面积相等时,此时点N的坐标为___________________.19.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An,则A2021的坐标是___________.20.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2020次相遇地点的坐标是____.三、解答题21.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求;(2)若为直线上一点.①的面积不大于面积的,求P点横坐标x的取值范围;②请直接写出用含x的式子表示y.(3)已知点,若的面积为6,请直接写出m的值.22.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.23.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)(),()(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数:(注:三角形三个内角的和为)(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.24.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.(2)请用含的式子表示,并直接写出的取值范围.25.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,,CD//x轴,CD=AB.(1)求点D的坐标:(2)四边形OCDB的面积四边形OCDB;(3)在y轴上是否存在点P,使△PAB=四边形OCDB;若存在,求出点P的坐标,若不存在,请说明理由.27.如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18.(1)求点的坐标;(2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标.28.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.29.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.(1)点A的坐标为;点的坐标为;点的坐标为;(2)如图②,是线段上不同于的任意一点,求证:;(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.30.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据f,g两种变换的定义自内而外进行解答即可.【详解】解:由题意得,f(5,﹣9)]=(﹣5,﹣9),∴g[f(5,﹣9)]=g(﹣5,﹣9)=(﹣9,﹣5),故选:C.【点睛】本题考查了新定义坐标变换,根据题意、弄懂两种变换的方法是解答本题的关键.2.A解析:A【分析】根据图形可找出点A3、A7、A11、A15、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(1+2n,0)(n为自然数)”,依此规律即可得出结论.【详解】解:观察图形可知:A3(1,0),A7(3,0),A11(5,0),A15(9,1),…,∴A4n+3(1+2n,0)(n为自然数).∵2019=504×4+3,∴n=504,∵1+2×504=1009,∴A2018(1009,0).故选:A.【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+3(1+2n,0)(n为自然数).”是解题的关键.3.C解析:C【分析】设横坐标为n的点的个数为an,横坐标≤n的点的个数为Sn(n为正整数),结合图形找出部分an的值,根据数值的变化找出变化规律“an=n”,再罗列出部分Sn的值,根据数值的变化找出变化规律,依次变化规律解不等式即可得出结论.【详解】设横坐标为n的点的个数为an,横坐标≤n的点的个数为Sn(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴an=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴Sn=1+2+…+n=.当100≤Sn,即100≤,解得:(舍去),或.∵,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“”.4.A解析:A【分析】根据图形推导出:当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(0,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n,0),然后根据2018=452-7,可推导出452是第几个正方形共有的点,最后再倒推7个点的横坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(0,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(2,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(0,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(4,0);故当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(0,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n,0).而2018=452-7n+1=45解得:n=44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(44,0),由图可知,再倒着推7个点的横坐标为:44.故选A.【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.5.B解析:B【解析】由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2017次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2−1,−2),即(1,−2),第2次变换后的点M的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2−3,−2),即(−1,−2),第n次变换后的点M的对应点的为:当n为奇数时为(2−n,−2),当n为偶数时为(2−n,2),∴连续经过2017次变换后,正方形ABCD的对角线交点M的坐标变为(−2015,−2).故选:B.点睛:本题是一道找规律问题.解题本题的关键在于要通过操作、观察得出操作次数与点的坐标之间的内在联系,并归纳得出符合规律的字母公式.6.A解析:A【解析】观察图形可知,到每一横坐标结束,经过整数点的点的总个数等于最后点的横坐标的平方,并且横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当横坐标是偶数时,以横坐标为1,纵坐标为横坐标减1的点结束,根据此规律解答即可:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个.∵452=2025,∴第2025个点是(45,0).∴第2016个点是(45,9).点睛:本题考查了点的坐标,观察出点个数与横坐标存在平方关系是解题的关键7.C解析:C【详解】试题分析:(1)A⊕B=(1+2,2﹣1)=(3,1),A⊗B=1×2+2×(﹣1)=0,所以(1)正确;(2)设C(,),A⊕B=(,),B⊕C=(,),而A⊕B=B⊕C,所以=,=,则,,所以A=C,所以(2)正确;(3)A⊗B=,B⊗C=,而A⊗B=B⊗C,则=,不能得到,,所以A≠C,所以(3)不正确;(4)因为(A⊕B)⊕C=(,),A⊕(B⊕C)=(,),所以(A⊕B)⊕C=A⊕(B⊕C),所以(4)正确.故选C.考点:1.命题与定理;2.点的坐标.8.C解析:C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.9.C解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.【详解】半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P运动到2021秒时的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.A解析:A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、、的值分别为:1,1,,,3,3,,;,,,,,,,,,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题11.(8,8)【分析】求出过无数次移动后的为移动的距离总和即可求出结果.【详解】解:设完成次移动,第一次移动的距离为4个单位长度到达点,以后每一次移动的距离都是前一次移动距离的一半,可以看作解析:(8,8)【分析】求出过无数次移动后的为移动的距离总和即可求出结果.【详解】解:设完成次移动,第一次移动的距离为4个单位长度到达点,以后每一次移动的距离都是前一次移动距离的一半,可以看作第一次移动的距离为8个单位长度的一半,即:移动的距离为4个单位长度,到达点,则余下一半,第二次移动的距离为第一次的移动距离一半,则余下还前一次的一半,……第次移动的距离为第次的移动距离一半,则余下还前一次的一半,即余下即:次移动的距离总和=,∴点最终接近的那个点的坐标为(8,8),故答案为:(8,8).【点睛】本题主要考查了点的平移规律,求出次移动的距离总和的近似值是解题关键.12.2n32n+10【分析】观察可得,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据本规解析:2n32n+10【分析】观察可得,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据本规律解答即可;【详解】解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3),2=21、4=22、8=23,∴An(2n,3),∵B(2,0),B1(4,0),B2(8,0),B3(16,0),2=21、4=22、8=23,16=24,∴Bn(2n+1,0).故答案为:2n,3;2n+1,0.【点睛】本题考查了坐标与图形性质,观察出点A、B系列的坐标的变化规律是解题的关键.13.(50,1)【分析】先找出点、、、、的坐标,然后根据点的坐标的变化可找出变化规律“为自然数”,依此规律即可得出结论.【详解】解:观察图形可知:,,,,,为自然数.,.故答案为:.【解析:(50,1)【分析】先找出点、、、、的坐标,然后根据点的坐标的变化可找出变化规律“为自然数”,依此规律即可得出结论.【详解】解:观察图形可知:,,,,,为自然数.,.故答案为:.【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“为自然数”是解题的关键.14.(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点解析:(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点移动的速度是1个单位长度/每秒,则:运动到(1,1)是2秒,2=1×2运动到(2,2)是6秒,6=2×3运动到(3,3)是12秒,12=3×4运动到(4,4)是20秒,20=4×5⋯⋯44×45=1980,即1980秒运动到点(44,44)2019-1980=39∵坐标为偶数的点的运动方向是:向上、向左,故第2019秒时这个点所在位置是点(44,44)向左运动39个单位,44-39=5,即第2019秒时这个点所在位置的坐标是(5,44)故答案为:(5,44)【点睛】此题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第2019秒时点所在位置的坐标是解决问题的关键.15.(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.16.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.17.(﹣3,1)(0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1)(0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣2),A5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.18.(0,﹣1)或(﹣1.5,0)【分析】分点N在x轴的负半轴上或y轴的负半轴上两种情况讨论即可.【详解】∵|a﹣2|+(b﹣3)2=0.∴a=2,b=3,∴A(0,2),B(3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N在x轴的负半轴上或y轴的负半轴上两种情况讨论即可.【详解】∵|a﹣2|+(b﹣3)2=0.∴a=2,b=3,∴A(0,2),B(3,0),∵点M的坐标为(,1),∴四边形ABOM的面积=S△AMO+S△ABO22×3,当点N在y轴的负半轴上时,•AN•OB,∴AN=3,ON=AN﹣OA=1,∴点N的坐标为(0,﹣1),当点N在x轴负半轴上时,•BN•AO,∴BN=4.5,ON=BN﹣OB=1.5,∴点N的坐标为(﹣1.5,0),综上所述,满足条件的点N的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.19.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.20.(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N和M的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N和M的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M所走过的路程,则第二次和第三次相遇过程中M所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知:∴正方形ABCD的边长为4,周长为4×4=16,∴点M与点N第一次相遇的时间为:(秒)∴此时点M所运动的路程为:4×1=4即M从(2,0)到了(0,2),∴M、N第一次相遇的坐标为(0,2),又∵M、N的速度比为1:3,时间相同,∵M、N的路程比为1:3,∴每次相遇时,M点运动的路程均为∴第二次相遇时,M在(-2,0),即(-2,0)为相遇地点的坐标,第三相遇时,M在(0,-2),即(0,-2)为相遇地点的坐标,第四次相遇时,M在(2,0),即(2,0)为相遇地点的坐标,第五相遇时,M在(0,2),即(0,2)为相遇地点的坐标,……∵∴M和N两点出发后的第2020次相遇在(2,0).故答案为:(2,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.三、解答题21.(1)4;(2)①或;②;(3)或.【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;②分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:,解得,,,轴轴,;(2)①的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,,因此有,解得,此时的取值范围为;如图,当时,则,,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;②当时,则,,由(2)①可知,,则,即;如图,当时,则,,,,,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)②可知,,则,由题意,分以下三种情况:①如图,当时,则,,解得,不符题设,舍去;②如图,当时,则,,解得或(不符题设,舍去);③如图,当时,则,,解得,符合题设,综上,的值为或.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.22.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析.【分析】(1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可.【详解】解:(1)∵将三角形OAB沿x轴负方向平移,∴BC∥x轴,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案为:(-2,0);(-3,0).(2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.23.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论.【详解】(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.24.(1)①1;②;(2).【分析】(1)①②根据点F的坐标构建方程即可解决问题.(2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<时,重叠部分是矩形AEHN.④如图4中,当-≤m<0时,重叠部分是正方形EFGH.分别求解即可解决问题.【详解】解:(1)①当点F与点B重合时,由题意3m=3,∴m=1.②当点F与点A重合时,由题意3m=-1,∴m=,故答案为1,.(2)①当时,如图1.,..②当时,如图2...③当时,如图3.,.④当时,如图4...综上,.【点睛】本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.25.(1)(0,2),(4,2),见解析,ABDC面积:8;(2)存在,P的坐标为(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C、D的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)分点P在x轴和y轴上两种情况,依据S△PAC=S四边形ABCD求解可得.【详解】(1)由题意知点C坐标为(﹣1+1,0+2),即(0,2),点D的坐标为(3+1,0+2),即(4,2),如图所示,S四边形ABDC=2×4=8;(2)当P在x轴上时,∵S△PAC=S四边形ABCD,∴,∵OC=2,∴AP=8,∴点P的坐标为(7,0)或(﹣9,0);当P在y轴上时,∵S△PAC=S四边形ABCD,∴,∵OA=1,∴CP=16,∴点P的坐标为(0,18)或(0,﹣14);综上,点P的坐标为(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【点睛】本题考查了坐标与图形性质,三角形的面积,坐标与图形变化﹣平移,熟记各性质是解题的关键.26.(1)(2)7(3)点的坐标为或【详解】试题分析:⑴抓住∥轴,可以推出纵坐标相等,而是横坐标之差的绝对值,以此可以求出点的坐标,根据图示要舍去一种情况.⑵四边形是梯形,根据点的坐标可以求出此梯形的上、下底和高,面积可求.⑶存在性问题可以先假设存在,在假设的基础上以△=四边形为等量关系建立方程,以此来探讨在轴上是否存在着符合条件的点.试题解析:⑴.∵∥轴,∴纵坐标相等;∵∴点的纵坐标也为2.设点的坐标为,则.又,且,∴,解得:.由于点在第一象限,所以,所以的坐标为.⑵.∵∥轴,且∴∴四边形=.⑶.假设在轴上存在点,使△=四边形.设的坐标为,则,而∴△=.∵△=四边形,四边形∴,解得;.均符合题意.∴在轴上存在点,使△=四边形.点的坐标为或.27.(1);(2)();(3)的值为4,点的坐标是.【分析】(1)根据△AOB的面积可求得OA的长,即可求得点A的坐标;(2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围;(3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F的坐标.【详解】(1)∵B(-6,0),∴OB=6,∵,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度农副食品国际贸易代理服务合同
- 2025年度内墙粉刷与智能化管理系统分包合同
- 二零二五年度商业门面租赁争议解决合同
- 二零二五年度庭院房产租赁合同解除与违约金合同
- 2025年度体育场馆运营管理公司健身教练合同
- 2025年度门面房租赁合同物联网技术应用协议4篇
- 课题申报参考:明代文人“引经入戏”研究
- 认识腧穴38课件讲解
- 2025年度个人住宅室内外绿化设计与施工合同2篇
- 2025版大型数据中心机房建设与运维合同4篇
- 2025水利云播五大员考试题库(含答案)
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读
- 中药饮片验收培训
- 手术室专科护士工作总结汇报
- DB34T 1831-2013 油菜收获与秸秆粉碎机械化联合作业技术规范
- 苏州市2025届高三期初阳光调研(零模)政治试卷(含答案)
- 创伤处理理论知识考核试题及答案
- (正式版)HG∕T 21633-2024 玻璃钢管和管件选用规定
- 《义务教育数学课程标准(2022年版)》测试题+答案
- 残疾军人新退休政策
- 白酒代理合同范本
评论
0/150
提交评论