版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省乐东思源高中2025届高一数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对2.函数零点所在的大致区间的A. B.C. D.3.设函数与的图象的交点为,则所在的区间为()A B.C. D.4.若点在角的终边上,则的值为A. B.C. D.5.某单位共有名职工,其中不到岁的有人,岁的有人,岁及以上的有人,现用分层抽样的方法,从中抽出名职工了解他们的健康情况.如果已知岁的职工抽取了人,则岁及以上的职工抽取的人数为()A. B.C. D.6.下列命题中,其中不正确个数是①已知幂函数的图象经过点,则②函数在区间上有零点,则实数的取值范围是③已知平面平面,平面平面,,则平面④过所在平面外一点,作,垂足为,连接、、,若有,则点是的内心A.1 B.2C.3 D.47.若,则的值为A. B.C.2 D.38.函数f(x)图象大致为()A. B.C. D.9.函数与g(x)=-x+a的图象大致是A. B.C. D.10.当时,若,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间为________12.已知函数,则______13.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______14.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.15.设,向量,,若,则_______16.已知α为第二象限角,且则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求值:;(2)已知集合,,求①,②.18.已知为第三象限角,且.(1)化简;(2)若,求的值.19.已知函数fx=sin(1)求ω的值;(2)求证:当x∈0,7π1220.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.21.已知函数.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数的图象通过变换得到的图象.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题2、B【解析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.3、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).4、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.5、A【解析】计算抽样比例,求出不到35岁的应抽取人数,再求50岁及以上的应抽取人数.【详解】计算抽样比例为,所以不到35岁的应抽取(人,所以50岁及以上的应抽取(人.故选:.6、B【解析】①②因为函数在区间上有零点,所以或,即③平面平面,平面平面,,在平面内取一点P作PA垂直于平面与平面的交线,作PB垂直于平面,则所以平面④因为,且,所以,即是的外心所以正确命题为①③,选B7、A【解析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【详解】由题意,因为,所以,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.8、A【解析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【点睛】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.9、A【解析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10、A【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.12、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.13、2【解析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【详解】设扇形的半径为,圆心角为,弧长,可得=4,这条弧所在的扇形面积为,故答案为.【点睛】本题主要考查扇形的面积公式和弧长公式,意在考查对基础知识与基本公式掌握的熟练程度,属于中档题.14、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.15、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.16、【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求【详解】由,得,得或.α为第二象限角,,.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①,②或【解析】(1)利用指数的运算性质和对数的运算性质求解,(2)先求出集合A的补集,再分别由并集、交集的定义求解、【详解】(1)原式;(2)因为,,所以或因此,或.18、(1);(2)﹒【解析】(1)利用三角函数的诱导公式即可化简;(2)根据求出sinα,=-cosα=即可求得﹒【小问1详解】【小问2详解】∵,∴,又为第三象限角,∴,∴19、(1)2;(2)证明见解析【解析】(1)解方程T=π=2π(2)利用三角函数的图象和性质,结合不等式逐步求出函数的最值即得证.【小问1详解】解:由题得T=π=2π【小问2详解】证明:fx因为0≤x≤7∴-π∴-3所以当x∈0,7π12即得证.20、(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换化简得出,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可得出函数的单调递增区间;(2)由可求得的取值范围,利用正弦型函数的基本性质可求得函数的值域.【小问1详解】解:,所以,函数的最小正周期为,由得,故函数的单调递增区间为.【小问2详解】解:当时,,,所以,,即函数在区间上的值域为.21、(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析.【解析】(Ⅰ)分别令取、、、、,列表、描点、连线可作出函数在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数的图象通过变换得到的图象的变换过程.【详解】(Ⅰ)列表如下:函数在一个周期内的图象简图如下图所示:(Ⅱ)总共有种变换方式,如下所示:方法一:先将函数的图象向左平移个单位,将所得图象上每个点的横坐标缩短为原来的倍,再将所得图象上每个点的纵坐标伸长为原来的倍,可得到函数的图象;方法二:先将函数的图象向左平移个单位,将所得图象上每个点的纵坐标伸长为原来的倍,再将所得图象上每个点的横坐标缩短为原来的倍,可得到函数的图象;方法三:先将函数的图象上每个点的横坐标缩短为原来的倍,将所得图象向左平移个单位,再将所得图象上每个点的纵坐标伸长为原来的倍,可得到函数的图象;方法四:先将函数的图象上每个点的横坐标缩短为原来的倍,将所得图象上每个点的纵坐标伸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产教融合中的关键问题分析
- 2024常用协议续约申请格式稿
- 2024年度房屋租赁合同协议书参考2篇
- 2024年商品销售前期意向协议典范版A版
- 2024隧道居间合同范本
- 2024专业洗车服务协议范本版B版
- 2024年二手房产:按揭房屋买卖协议3篇
- 2024不动产投资合作合同
- 2024年度钢管架搭建工程协议范本版B版
- 2024活动会议举办合同书
- 第1课+古代亚非(教学设计)【中职专用】《世界历史》(高教版2023基础模块)
- 2024年6月广东省高中学业水平考试物理试卷(附答案)
- 建筑钢结构焊接变形控制措施
- 终端安全运维方案设计
- 军事理论论文2000字
- 2024年广西能汇投资集团有限公司招聘笔试参考题库含答案解析
- 球墨铸铁管件理论重量规格表
- 《高血压危象和治疗》课件
- 《湖南省病历书写规范与管理规定及病例(案)医疗质量》评定标准解析课件
- 技术哲学导论课件
- 2024年中储粮河南分公司招聘笔试参考题库含答案解析
评论
0/150
提交评论