2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题含解析_第1页
2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题含解析_第2页
2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题含解析_第3页
2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题含解析_第4页
2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届青海省平安区第一高级中学高一数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.2.已知函数fx①fx的定义域是-②fx③fx在区间(0,+④fx的图像与gx=1其中正确的结论是()A.①② B.③④C.①②③ D.①②④3.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.284.将函数y=2sin(2x+)的图象向左平移个最小正周期后,所得图象对应的函数为()A. B.C. D.5.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.植物研究者在研究某种植物1-5年内的植株高度时,将得到的数据用下图直观表示.现要根据这些数据用一个函数模型来描述这种植物在1-5年内的生长规律,下列函数模型中符合要求的是()A.(且)B.(,且)C.D.7.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC8.设向量=(1.)与=(-1,2)垂直,则等于A. B.C.0 D.-19.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.10.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的偶函数,当时,,则________12.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______13.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________14.若实数x,y满足,则的最小值为___________15.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________16.已知是定义在上的偶函数,且当时,,则当时,___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;18.如图1,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图2,某摩天轮最高点距离地面高度为110m,转盘直径为100m,设置有48个座舱,开启时按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30.(1)求游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度;(2)以轴心为原点,与地面平行的直线为轴,所在的直线为轴建立直角坐标系,游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为m,求在转动一周的过程中,关于的函数解析式;(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m)关于的函数解析式,并求高度差的最大值(结果精确到0.1m).参考公式:.参考数据:,19.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.20.已知平行四边形的三个顶点的坐标为.(Ⅰ)在中,求边中线所在直线方程(Ⅱ)求的面积.21.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B2、D【解析】可根据已知的函数解析式,通过求解函数的定义域、奇偶性、单调性和与gx=【详解】函数fx=x②选项,因为fx=x选项③,在区间0,+∞时,fx=xx2+1=1x+1x,而函数选项④,可通过画出fx的图像与gx=1故选:D.3、C【解析】根据分层抽样的概念即得【详解】由题可知该样本中获得B等级的学生人数为故选:C4、C【解析】求解函数y的最小正周期,根据三角函数的平移变换规律,即可求解.【详解】函数y=2sin(2x+)其周期T=π,图象向左平移个最小正周期后,可得y=2sin[2(x+)+]=2sin(2x++)=2cos(2x+)故选C.【点睛】本题考查了最小正周期的求法和函数y=Asin(ωx+φ)的图象变换规律,属于基础题5、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件6、B【解析】由散点图直接选择即可.【详解】解:由散点图可知,植物高度增长越来越缓慢,故选择对数模型,即B符合.故选:B.7、C【解析】由斜二测画法得到原三角形,结合其几何特征易得答案.【详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【点睛】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题8、C【解析】:正确的是C.点评:此题主要考察平面向量的数量积的概念、运算和性质,同时考察三角函数的求值运算.9、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D10、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.12、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角13、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.14、【解析】由对数的运算性质可求出的值,再由基本不等式计算即可得答案【详解】由题意,得:,则(当且仅当时,取等号)故答案为:15、①③④【解析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④16、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【详解】(1)因为、分别为、的中点,所以.又因为平面,所以平面;(2)因为,为的中点,所以,又因为平面平面,平面平面,且平面,所以平面,平面,平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1)m;(2);(3),;m【解析】(1)设时,游客甲位于,得到以为始边的角,即初相,再利用周期性和最值得到函数的解析式,令求解即可.(2)由(1)的求解过程即可得出答案.(3)甲、乙两人的位置分别用点、表示,则,分别求出后甲和乙距离地面的高度,从而求出高度差,再利用已知条件给出的参考公式进行化简变形,利用三角函数的有界性进行分析求解即可.【详解】(1)设时,游客甲位于,得到以为始边的角为,根据摩天轮转一周需要30,可知座舱转动的速度约为,由题意可得,,(),当时,,所以游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度为米.(2)由(1)可得,,;(3)如图,甲、乙两人的位置分别用点、表示,则,经过后,甲距离地面的高度为,点相对于始终落后,此时乙距离地面的高度,则甲、乙高度差为,利用,可得,,当或,即或,所以的最大值为米,所以甲、乙两人距离地面的高度差的最大值约为米.19、(1),(2)时,最大值是2,时,最小值是1【解析】(1)利用正弦函数的性质求解;(2)由正弦函数的性质求解.【小问1详解】解:的最小正周期为,由,得,所以函数的对称轴方程为;【小问2详解】由(1)知,时,,则,即时,,,即时,,的最大值是2,此时,的最小值是1,此时.20、(I);(II)8.【解析】(I)由中点坐标公式得边的中点,由斜率公式得直线斜率,进而可得点斜式方程,化为一般式即可;(II)由两点间距离公式可得可得的值,由两点式可得直线的方程为,由点到直线距离公式可得点到直线的距离,由三角形的面积公式可得结果.试题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论