




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿克苏市阿瓦提县第四中学2025届数学高二上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.42.是等差数列,且,,则的值()A. B.C. D.3.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.94.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限5.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.7.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.18.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.9.如图所示,某空间几何体的三视图是3个全等的等腰直角三角形,且直角边长为2,则该空间几何体的体积为()A. B.C. D.10.不等式的解集为()A. B.C.或 D.或11.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,12.已知随圆与双曲线相同的焦点,则椭圆和双曲线的离心,分别为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______14.正方体的棱长为2,点为底面正方形的中心,点在侧面正方形的边界及其内部运动,若,则点的轨迹的长度为______15.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.16.已知,动点满足,则点的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.18.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由19.(12分)在△ABC中,角A,B,C所对的边为a,b,c,其中,,且(1)求角B的值;(2)若,判断△ABC的形状20.(12分)如图,在三棱锥中,,点P为线段MC上的点(1)若平面PAB,试确定点P的位置,并说明理由;(2)若,,,求三棱锥的体积21.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.22.(10分)如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C2、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B3、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B4、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.5、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A6、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C7、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C8、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质9、A【解析】在该空间几何体的直观图中去求其体积即可.【详解】依托棱长为2的正方体得到该空间几何体的直观图为三棱锥则故选:A10、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A11、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.12、B【解析】设公共焦点为,推导出,可得出,进而可求得、的值.【详解】设公共焦点为,则,则,即,故,即,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,14、【解析】取中点,利用线面垂直的判定方法可证得平面,由此可确定点轨迹为,再计算即可.【详解】取中点,连接,平面,平面,,又四边形为正方形,,又,平面,平面,又平面,;由题意得:,,,,;平面,,平面,,在侧面的边界及其内部运动,点轨迹为线段;故答案为:.15、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.16、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即18、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使19、(1)(2)等边三角形【解析】(1)把化为,然后由正弦定理化边为角,利用两角和的正弦公式、诱导公式可求得;(2)由余弦定理及三角形面积公式可得,从而得出三角形为等边三角形【小问1详解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小问2详解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以该三角形为等边三角形20、(1)点P为MC中点,理由见解析(2)【解析】(1)根据平面PAB,得到线线垂直,再得到点P的位置;(2)根据平面PAB,将问题转化为计算即可.【小问1详解】∵平面PAB,平面ABP,∴又∵在中,,∴P为MC中点.∴若平面PAB,则点P为MC中点【小问2详解】当P为中点时,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱锥的体积为21、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业集团转让合同范本
- 卖场业务员合同范例
- 移动房出售合同范本
- 房屋土地合作合同范本
- 云南2025年02月云南省有色地质局上半年公开招考38名人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 苏州2025年江苏苏州张家港市招聘备案制教师47人笔试历年参考题库附带答案详解
- 2025年植物病虫害防治技能竞赛备考试指导题库500题(含答案)
- 门窗店铺转让合同范本
- 2025至2030年中国杨琴弦数据监测研究报告
- 婴幼儿疾病常见症状课件
- 注意缺陷与多动障碍疾病科普幼儿心理健康教育课件
- 区域临床检验中心
- 2024年07月长沙农村商业银行股份有限公司2024年招考3名信息科技专业人才笔试历年参考题库附带答案详解
- 中医预防流感知识讲座
- 事故隐患内部报告奖励机制实施细则
- 船舶水下辐射噪声指南 2025
- 2024年黑龙江哈尔滨市中考英语真题卷及答案解析
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 2025年中国配音行业市场现状、发展概况、未来前景分析报告
- 中建建筑工程竣工验收指南
- 2020年同等学力申硕《计算机科学与技术学科综合水平考试》历年真题及答案
评论
0/150
提交评论