2025届浙江省台州市数学高一上期末教学质量检测试题含解析_第1页
2025届浙江省台州市数学高一上期末教学质量检测试题含解析_第2页
2025届浙江省台州市数学高一上期末教学质量检测试题含解析_第3页
2025届浙江省台州市数学高一上期末教学质量检测试题含解析_第4页
2025届浙江省台州市数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省台州市数学高一上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在上的偶函数,且当时,单调递减,则关于x的不等式的解集是()A. B.C. D.2.已知平面向量,,且,则等于()A.(-2,-4) B.(-3,-6)C.(-5,-10) D.(-4,-8)3.下列四个函数中,在其定义域上既是奇函数又是增函数的是()A. B.y=tanxC.y=lnx D.y=x|x|4.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在5.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则6.已知、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则;②若,,且,则;③若,,则;④若,,且,则其中正确命题的序号是()A.②③ B.①④C.②④ D.①③7.若角的终边过点,则A. B.C. D.8.若,,则下列结论正确的是()A. B.C. D.9.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.10.已知函数(,且)的图象恒过点P,若角的终边经过点P,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数(是常数)的图象经过点,那么________12.已知,则的值为___________.13.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),以筒车转轮的中心为原点,过点的水平直线为轴建立如图直角坐标系.已知一个半径为1.6m的筒车按逆时针方向每30s匀速旋转一周,到水面的距离为0.8m.规定:盛水筒对应的点从水中浮现(时的位置)时开始计算时间,且设盛水筒从点运动到点时所经过的时间为(单位:s),且此时点距离水面的高度为(单位:m)(在水面下则为负数),则关于的函数关系式为___________,在水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为___________s.14.若函数的定义域为[-2,2],则函数的定义域为______15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________16.定义在R上的奇函数f(x)周期为2,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为偶函数.(1)判断在上的单调性并证明;(2)求函数在上的最小值.18.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.19.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围20.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表:v0406080120Q0.0006.6678.12510.00020.000为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少?21.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由偶函数的性质求得,利用偶函数的性质化不等式中自变量到上,然后由单调性转化求解【详解】解:由题意,,的定义域,时,递减,又是偶函数,因此不等式转化为,,,解得故选:D2、D【解析】由,求得,再利用向量的坐标运算求解.【详解】解:因为,,且,所以m=-4,,所以=(-4,-8),故选:D3、D【解析】由奇偶性排除AC,由增减性排除B,D选项符合要求.【详解】,不是奇函数,排除AC;定义域为,而在上为增函数,故在定义域上为增函数的说法是不对的,C错误;满足,且在R上为增函数,故D正确.故选:D4、C【解析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【点睛】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.5、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.6、A【解析】对于①当,时,不一定成立;对于②可以看成是平面的法向量,是平面的法向量即可;对于③可由面面垂直的判断定理作出判断;对于④,也可能相交【详解】①当,时,不一定成立,m可能在平面所以错误;②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;③因为,则一定存在直线在,使得,又可得出,由面面垂直的判定定理知,,故成立;④,,且,,也可能相交,如图所示,所以错误,故选A【点睛】本题以命题的真假判断为载体考查了空间直线与平面的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键7、D【解析】角的终边过点,所以.由角,得.故选D.8、C【解析】根据不等式的性质,逐一分析选项,即可得答案.【详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C9、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D10、A【解析】由题可得点,再利用三角函数的定义即求.【详解】令,则,所以函数(,且)的图象恒过点,又角的终边经过点,所以,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:12、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:13、①.②.10【解析】根据给定信息,求出以Ox为始边,OP为终边的角,求出点P的纵坐标即可列出函数关系,再解不等式作答.【详解】依题意,点到x轴距离为0.8m,而,则,从点经s运动到点所转过的角为,因此,以Ox为始边,OP为终边的角为,点P的纵坐标为,于是得点距离水面的高度,由得:,而,即,解得,对于k的每个取值,,所以关于的函数关系式为,水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为10s.故答案为:;10【点睛】关键点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x轴非负半轴.14、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为15、1【解析】由图可知,该三棱锥的体积为V=16、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在上单调递增,证明见解析(2)【解析】(1)先利用函数的奇偶性求得,然后利用单调性的定义证得,从而证得在上递增.(2)利用换元法化简,对进行分类讨论,结合二次函数的性质求得在上的最小值.【小问1详解】为偶函数,,即,,则.所以.在为增函数,证明如下:任取,,且,,,,,.即,在上单调递增.【小问2详解】,令,结合题意及(1)的结论可知.,.①当时,;②当时,;③当时,.综上,.18、(1)(2)(3)【解析】(1)将函数f(x)=sinxcosx−cos2x+m化为只含有一个三角函数的形式,根据三角函数的性质求其最大值,可得答案;(2)根据x[0,],求出的范围,根据三角函数性质,求得答案;(3)根据f(x)≥,利用三角函数的性质,即可求得答案.【小问1详解】由题意可知,函数的最大值,解得【小问2详解】由(1)可知,当时,,,所以,所以当时的取值范围是【小问3详解】因为,则,所以,所以,所以的解集是19、(1)4(2)【解析】(1)分类讨论和两种情况,由其单调性得出a的值;(2)令,结合一元二次方程根的分布得出t的取值范围【小问1详解】解:当时,,则,故没有最小值当时,由,得,则在上单调递减,在上单调递增,故,即【小问2详解】的图象如图所示令,则函数在上有2个零点,得解得,故t的取值范围为20、(1)最符合实际的模型为①,理由见解析(2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少【解析】(1)根据定义域和单调性来判断;(2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可.【小问1详解】依题意,所选的函数必须满足两个条件:定义域为,且在区间上单调递增.由于模型③定义域不可能是.而模型②在区间上是减函数.因此,最符合实际的模型为①.【小问2详解】设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有.∵,,∴,它是一个关于v的开口向上的二次函数,其对称轴为,且,∴当时,y有最小值.由题设表格知,当时,,,.∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少.21、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论