版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市广安中学2025届高一数学第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,为平面向量,则“存在实数,使得”是“向量,共线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.3.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.4.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]5.设则的值为A. B.C.2 D.6.定义在的函数,已知是奇函数,当时,单调递增,若且,且值()A.恒大于0 B.恒小于0C.可正可负 D.可能为07.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.若直线经过两点,,且倾斜角为,则的值为()A.2 B.1C. D.9.如图所示,在中,.若,,则()A. B.C. D.10.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.若直线l在x轴上的截距为1,点到l的距离相等,则l的方程为______.12.已知,若,使得,若的最大值为M,最小值为N,则___________.13.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______14.已知函数是定义在上的奇函数,当时,,则当时____15.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).16.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,图象上两相邻对称轴之间的距离为;_______________;(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.注:如果选择多个条件分别解答,按第一个解答计分.18.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求实数m值;(2)若﹁q是p的必要条件,求实数m的取值范围19.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围20.已知命题题.若p是q的充分条件,求实数a的取值范围.21.新冠病毒怕什么?怕我们身体的抵抗力和免疫力!适当锻炼,合理休息,能够提高我们身体的免疫力,抵抗各种病毒.某小区为了调查居民的锻炼身体情况,从该小区随机抽取了100为居民,记录了他们某天的平均锻炼时间,其频率分别直方图如下:(1)求图中的值和平均锻炼时间超过40分钟的人数;(2)估计这100位居民锻炼时间的平均数(同一组中的数据用该组区间的中点值代表)和中位数
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】结合充分条件和必要条件的概念以及向量共线即可判断.【详解】充分性:由共线定理即可判断充分性成立;必要性:若,,则向量,共线,但不存在实数,使得,即必要性不成立.故选:A.2、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题3、B【解析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【点睛】本题考查外接球的表面积,属于一般题4、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.5、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题6、A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知选A7、B【解析】根据指数函数的性质求的解集,由充分、必要性的定义判断题设条件间的关系即可.【详解】由,则,所以“”是“”的充分不必要条件.故选:B8、A【解析】直线经过两点,,且倾斜角为,则故答案为A.9、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C10、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】考虑斜率不存在和存在两种情况,利用点到直线距离公式计算得到答案.【详解】显然直线轴时符合要求,此时的方程为.当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.∵A,B到l的距离相等∴,∴,∴,∴直线l的方程为.故答案为或【点睛】本题考查了点到直线的距离公式,忽略掉斜率不存在的情况是容易犯的错误.12、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.13、①.1②.【解析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,14、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.15、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.16、(-4,4]【解析】根据复合函数的单调性,结合真数大于零,列出不等式求解即可.【详解】令g(x)=x2-ax+3a,因为f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案为:.【点睛】本题考查由对数型复合函数的单调性求参数范围,注意定义域即可,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.【解析】(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.【详解】(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(Ⅱ)令,,,,当或时,即当或时,线段的长取到最大值.【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题.18、(1)m=4;(2)m>6或m<-4【解析】(1)分别求得集合A、B,根据交集的结果,列出方程,即可得答案.(2)根据题意可得p是﹁q的充分条件,可得,先求得,根据包含关系,列出不等式,即可得答案.【详解】解:(1)由题意得:A={x|-1≤x≤3,x∈R},B={x|m-3≤x≤m+3,x∈R,m∈R},∵A∩B={x|1≤x≤3,x∈R},∴,解得m=4(2)∵﹁q是p的必要条件,∴p是﹁q的充分条件,∴,又,∴或,解得m>6或m<-419、(1)1(2)【解析】(1)由函数奇偶性列出等量关系,求出实数k的值;(2)对原式进行化简,得到对恒成立,分和两种情况分类讨论,求出实数a的取值范围.【小问1详解】由可得,即对恒成立,可解得:【小问2详解】当时,有由,即有,且故有对恒成立,①若,则显然成立②若,则函数在上单调递增故有,解得:;综上:实数a的取值范围为20、【解析】设命题对应的集合为,命题对应的集合为,由是,由,得,即是使,对分类讨论可得.【详解】解:由,得,设命题对应的集合为设命题对应的集合为,是由,得,若时,,,则显然成立;若时,,则,综上:.【点睛】本题考查根据充分条件求参数的取值范围,不等式的解法,属于基础题.21、(1),平均锻炼时间超过40分钟的人数为18人(2)100位居民锻炼时间的平均数为分钟,中位数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年会活动总结范文15篇
- 志愿者服务心得体会(15篇)
- 法治社会+学案 高中政治统编版必修三政治与法治
- 初级会计实务-《初级会计实务》预测试卷263
- 初级会计经济法基础-初级会计《经济法基础》模考试卷110
- 二氧化硅壳层微胶囊的制备及其复合材料自润滑性能研究
- 二零二五年度个人离婚子女抚养权协议范本4篇
- 二零二五年度健康产业养生顾问劳动合同2篇
- 二零二五年度净水设备售后技术支持与用户满意度提升协议3篇
- 软件行业美工工作总结
- 2024年湖南高速铁路职业技术学院高职单招数学历年参考题库含答案解析
- 上海铁路局招聘笔试冲刺题2025
- 国旗班指挥刀训练动作要领
- 植物芳香油的提取 植物有效成分的提取教学课件
- 肖像绘画市场发展现状调查及供需格局分析预测报告
- 2021-2022学年辽宁省重点高中协作校高一上学期期末语文试题
- 同等学力英语申硕考试词汇(第六版大纲)电子版
- 墓地个人协议合同模板
- 2023年北京自然博物馆招考聘用笔试参考题库附答案详解
- 土方转运方案
- (11.3.1)-10.3蒸汽压缩制冷循环
评论
0/150
提交评论