云南省施甸县第三中学2025届高一数学第一学期期末联考试题含解析_第1页
云南省施甸县第三中学2025届高一数学第一学期期末联考试题含解析_第2页
云南省施甸县第三中学2025届高一数学第一学期期末联考试题含解析_第3页
云南省施甸县第三中学2025届高一数学第一学期期末联考试题含解析_第4页
云南省施甸县第三中学2025届高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省施甸县第三中学2025届高一数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时,)A.1.24 B.1.25C.1.26 D.1.272.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数3.方程的解所在的区间为()A. B.C. D.4.集合A=,B=,则集合AB=()A. B.C. D.5.若tanα=2,则的值为()A.0 B.C.1 D.6.函数与则函数所有零点的和为A.0 B.2C.4 D.87.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm38.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.169.设,满足约束条件,且目标函数仅在点处取得最大值,则原点到直线的距离的取值范围是()A. B.C. D.10.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,二、填空题:本大题共6小题,每小题5分,共30分。11.计算的结果是_____________12.已知函数为奇函数,则______13.已知圆,则过点且与圆C相切的直线方程为_____14.设函数,则____________.15.已知,,向量与的夹角为,则________16.已知函数有两个零点分别为a,b,则的取值范围是_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.(1)求总人数和分数在的人数;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.18.已知函数为偶函数.(1)判断在上的单调性并证明;(2)求函数在上的最小值.19.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.20.已知,(1)求的值;(2)求的值21.已知集合,(1)时,求及;(2)若时,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意,代值计算,即可得,再结合参考公式,即可估算出结果.【详解】根据题意可得:可得,解得,根据参考公式可得,故与最接近的是.故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.2、A【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A3、C【解析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可.【详解】函数在上单增,由,知,函数的根处在里,故选:C4、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.5、B【解析】将目标是分子分母同时除以,结合正切值,即可求得结果.【详解】==.故选:【点睛】本题考查齐次式的化简和求值,属基础题.6、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等7、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.8、B【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.9、B【解析】作出可行域,由目标函数仅在点取最大值,分,,三种情况分类讨论,能求出实数的取值范围.然后求解到直线的距离的表达式,求解最值即可详解】解:由约束条件作出可行域,如右图可行域,目标函数仅在点取最大值,当时,仅在上取最大值,不成立;当时,目标函数的斜率,目标函数在取不到最大值当时,目标函数的斜率,小于直线的斜率,综上,原点到直线的距离则原点到直线的距离的取值范围是:故选B【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意线性规划知识的合理运用.10、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】根据对数的运算公式,即可求解.【详解】根据对数的运算公式,可得.故答案为:.12、##【解析】利用奇函数的性质进行求解即可.【详解】因为是奇函数,所以有,故答案:13、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.14、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:15、1【解析】由于.考点:平面向量数量积;16、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)众数和中位数分别是107.5,110;(3)﹒【解析】(1)先求出分数在内的学生的频率,由此能求出该班总人数,再求出分数在内的学生的频率,由此能求出分数在内的人数(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数(3)由题意分数在内有学生6名,其中男生有2名.设女生为,,,,男生为,,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率【小问1详解】分数在内的学生的频率为,∴该班总人数为分数在内的学生的频率为:,分数在内的人数为【小问2详解】由频率直方图可知众数是最高的小矩形底边中点的横坐标,即为设中位数为,,众数和中位数分别是107.5,110【小问3详解】由题意分数在内有学生名,其中男生有2名设女生为,,,,男生为,,从6名学生中选出2名的基本事件为:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15种,其中至多有1名男生的基本事件共14种,其中至多含有1名男生的概率为18、(1)在上单调递增,证明见解析(2)【解析】(1)先利用函数的奇偶性求得,然后利用单调性的定义证得,从而证得在上递增.(2)利用换元法化简,对进行分类讨论,结合二次函数的性质求得在上的最小值.【小问1详解】为偶函数,,即,,则.所以.在为增函数,证明如下:任取,,且,,,,,.即,在上单调递增.【小问2详解】,令,结合题意及(1)的结论可知.,.①当时,;②当时,;③当时,.综上,.19、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论