四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题含解析_第1页
四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题含解析_第2页
四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题含解析_第3页
四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题含解析_第4页
四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元市万达中学、八二一中学2025届高一数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.2.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移单位长度 D.向右平移个单位长度3.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数 B.奇函数C.增函数 D.减函数5.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为6.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④7.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.8.如图是正方体或四面体,分别是所在棱的中点,则这四个点不共面的一个图是()A. B.C. D.9.已知,则的最小值为().A.9 B.C.5 D.10.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.661二、填空题:本大题共6小题,每小题5分,共30分。11.集合的非空子集是________________12.已知集合,则集合的子集个数为___________.13.函数的定义域是_____________14.函数且的图象恒过定点__________.15.已知角的终边经过点,则__16.已知函数,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)讨论在区间上的单调递增区间18.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.19.已知,且,求的值20.已知函数.(1)判断函数的奇偶性,并证明;(2)设函数,若对任意的,总存在使得成立,求实数m的取值范围.21.已知且满足不等式.(1)求不等式;(2)若函数在区间有最小值为,求实数值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.2、D【解析】利用函数的图象变换规律即可得解.【详解】解:,只需将函数图象向右平移个单位长度即可故选.【点睛】本题主要考查函数图象变换规律,属于基础题3、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B4、D【解析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D5、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.6、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B7、D【解析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【点睛】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.8、D【解析】A,B,C选项都有,所以四点共面,D选项四点不共面.故选:D.9、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.10、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.12、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.13、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.14、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.15、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.16、【解析】运用代入法进行求解即可.【详解】,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期是(2)单调递增区间,【解析】(1)由三角恒等变换得,再求最小正周期;(2)整体代换得函数的增区间为,再结合求解即可.【小问1详解】解:.所以,,即最小正周期为.【小问2详解】解:令,解得,因为,所以,当时,得其增区间为;当时,得其增区间为;所以,在区间上单调递增区间为,18、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2)运用对数运算性质及均值不等式即可得到结果;(3)先证明函数单调性,化抽象不等式为具体不等式,转求函数的最值即可.【小问1详解】因为为偶函数,所以,所以,所以,所以.【小问2详解】因为,所以(当且仅当时等号成立),所以最小值为.【小问3详解】,任取且,所以,因为且,所以,所以,所以,所以,所以在上为增函数,又因为为偶函数,所以,当时,,当时,,所以,设(当且仅当时,等号成立),因为,所以等号能成立,所以,所以,所以,综上,.19、【解析】利用同角三角函数的基本关系可求得的值,再结合诱导公式可求得所求代数式的值.【详解】∵,∴,∵,∴所以,∴【点睛】关键点睛:解决三角函数中的给值求值的问题时,关键在于找出待求的角与已知的角之间的关系.20、(1)偶函数,证明见解析(2)【解析】(1)为偶函数,利用偶函数定义证明即可;(2)转化为,利用均值不等式可求解的最大值,利用一次函数性质求解的最大值,分析即得解.【小问1详解】为偶函数证明:,故,解得的定义域为,关于原点对称,为偶函数【小问2详解】若对任意的,总存在,使得成立则又,当且仅当,即取等号所以所求实数m的取值范围为21、(1);(2).【解析】(1)运用指数不等式的解法,可得的范围,再由对数不等式的解法,可得解集;(2)由题意可得函数在递减,可得最小值,解方程可得的值试题解析:(1)∵22a+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论