山东泰安知行学校2025届高二数学第一学期期末统考试题含解析_第1页
山东泰安知行学校2025届高二数学第一学期期末统考试题含解析_第2页
山东泰安知行学校2025届高二数学第一学期期末统考试题含解析_第3页
山东泰安知行学校2025届高二数学第一学期期末统考试题含解析_第4页
山东泰安知行学校2025届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东泰安知行学校2025届高二数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.2.已知对任意实数,有,且时,则时A. B.C. D.3.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称4.双曲线:的实轴长为()A. B.C.4 D.25.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南6.已知空间向量,,若,则实数的值是()A. B.0C.1 D.27.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42C.43 D.459.已知数列满足,,则的最小值为()A. B.C. D.10.已知,,,则,,的大小关系是A. B.C. D.11.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.12.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.99二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.14.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______15.椭圆的焦距为______.16.已知数列是等差数列,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.18.(12分)双曲线,离心率,虚轴长为2(1)求双曲线的标准方程;(2)经过点的直线与双曲线相交于两点,且为的中点,求直线的方程19.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.21.(12分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值22.(10分)已知点,点为直线上的动点,过作直线的垂线,线段的中垂线与交于点.(1)求点的轨迹的方程;(2)若过点直线与曲线交于,两点,求与面积之和的最小值.(为坐标原点)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D2、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性3、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.4、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A5、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D6、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C7、B【解析】因但8、B【解析】根据已知求出公差即可得出.【详解】设等差数列的公差为,因为,,所以,则.故选:B.9、C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C10、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目11、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C12、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:14、##【解析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:15、【解析】由求出即可.【详解】可化为,设焦距为,则,则焦距故答案为:16、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)首项为-2,公差为1;(2).【解析】(1)设出等差数列的公差,再结合前n项和公式列式计算作答.(2)由(1)的结论,探求数列的性质即可推理计算作答.【小问1详解】设等差数列首项为,公差为,而为其前n项和,,,于是得:,解得,,所以,.【小问2详解】由(1)知,,,,数列是递增数列,前3项均为非正数,从第4项起为正数,而,于是得的前2项和与前3项和相等并且最小,所以当或时,.18、(1)(2)【解析】(1)根据题意求出即可得出;(2)利用点差法求出直线斜率即可得出方程.【小问1详解】∵,,∴,,∵,∴,∴,∴双曲线的标准方程为;【小问2详解】设以定点为中点的弦的端点坐标为,可得,,由在双曲线上,可得:,两式相减可得以定点为中点的弦所在的直线斜率为:则以定点为中点的弦所在的直线方程为,即为,联立方程得:,,符合,∴直线的方程为:.19、(1);(2)【解析】(1)将题目的条件写成的形式并求解,写出等比等比数列通项公式;(2)利用错位相减法求和.小问1详解】由题意可得,,∴,∵,∴,∴数列的通项公式为.【小问2详解】,∴①,②,①-②可得,∴.20、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数列的通项公式为.【小问2详解】解:由,所以,可得,两式相减得,所以.21、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[方法四]:纯体积法设正方体的棱长为2,点到平面的距离为h,在中,,,所以,易得由,得,解得,设直线与平面所成的角为,所以【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明;(II)第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却了辅助线和几何的论证,不失为一种优美的方法.22、(1)(2)【解析】(1)根据抛物线的定义可得轨迹方程;(2)联立直线与抛物线方程,利用根与系数关系结合均值不等式可得最小值【小问1详解】如图所示,由已知得点为线段

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论