版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市西山区民中2025届数学高二上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.2.已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A. B.C. D.3.函数的最小值为()A. B.1C.2 D.e4.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.605.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④6.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.97.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.18.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.9.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题10.若圆与直线相切,则实数的值为()A. B.或3C. D.或11.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.412.正四棱锥中,,则直线与平面所成角的正弦值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设圆,圆,则圆有公切线___________条.14.过抛物线的焦点作互相垂直的两条直线,分别交抛物线与A,C,B,D四点,则四边形ABCD面积的最小值为___________15.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____16.抛物线的准线方程是,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.18.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程19.(12分)如图,已知平面,四边形为矩形,四边形为直角梯形,,,,(1)求证:∥平面;(2)求证:平面平面20.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.21.(12分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.22.(10分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C2、C【解析】点P取端轴的一个端点时,使得∠F1PF2是最大角.已知椭圆上不存在点P,使得∠F1PF2是钝角,可得b≥c,利用离心率计算公式即可得出【详解】∵点P取端轴的一个端点时,使得∠F1PF2是最大角已知椭圆上不存在点P,使得∠F1PF2是钝角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故选C【点睛】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).3、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B4、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.5、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题6、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项7、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题8、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.9、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C10、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.11、B【解析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B12、C【解析】建立合适的空间直角坐标系,求出和平面的法向量,直线与平面所成角的正弦值即为与的夹角的余弦值的绝对值,利用夹角公式求出即可.【详解】建立如图所示的空间直角坐标系.有图知,由题得、、、.,,.设平面的一个法向量,则,,令,得,,.设直线与平面所成的角为,则.故选:C.【点睛】本题考查线面角的求解,利用向量法可简化分析过程,直接用计算的方式解决问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将圆转化成标准式,结合圆心距判断两圆位置关系,进而求解.【详解】由题意得,圆:,圆:,∴,∴与相交,有2条公切线.故答案为:214、512【解析】设出直线的方程与抛物线方程联立,结合抛物线的定义、一元二次方程根与系数的关系进行求解即可.【详解】抛物线焦点的坐标为,由题意可知:直线存在斜率且不为零,所以设直线的斜率为,所以直线的方程为,与抛物线的方程联立得:,设,所以,由抛物线的定义可知:,因为直线互相垂直,所以直线的斜率为,同理可得:,所以四边形ABCD面积为:,当且仅当时取等号,即当时取等号,故答案为:51215、【解析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.16、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知可得出,求出的值,即可得解;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】解:平面,,以点为坐标原点,、、所在直线分别为、、轴建立如图所示的空间直角坐标系,设,则、、、,则,,,则,解得,故.【小问2详解】解:,则,又、、,所以,,,设为平面的法向量,则,取,可得,显然,为平面的一个法向量,,因此,平面与平面夹角的余弦值为.18、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由,得,∴,,,∵以为直径的圆过点,∴,即,∴,解得,∴直线的方程是19、(1)证明见解析(2)证明见解析【解析】(1)根据线面平行的判定,证明即可;(2)过C作,垂足为M,根据勾股定理证明,再根据线面垂直的性质与判定证明平面BCE即可【小问1详解】证明:因为四边形ABEF为矩形,所以,又平面BCE,平面BCE,所以平面BCE【小问2详解】过C作,垂足为M,则四边形ADCM为矩形因为,,所以,,,,所以,所以因为平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE20、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.21、(1);(2)证明见解析.【解析】(1)由和,联立求解;(2)由(1)易得直线:,直线:,,分别与x=t联立,求得M,N坐标,设,利用,得到,然后两边乘以,结合点P在椭圆上化简得到即可,【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度高端汽车销售代理服务合同3篇
- 二零二五年度冲击钻施工安全防护措施合同4篇
- 绿色办公环境的营造与策略研究
- 跨越领域的学习学生自主学习的跨学科应用
- 实验室自动化设备的智能化转型
- 电商助力小区内快消品市场的线上化转型之路
- 二零二五年度车辆租赁合同电子化管理范本7篇
- 2025版专业烘焙食材配送合同书(含定制化服务)3篇
- 二零二五年度财务数据保密及风险评估协议2篇
- 二零二五年度餐厅品牌跨界合作开发合同3篇
- 医院急诊医学小讲课课件:急诊呼吸衰竭的处理
- 肠梗阻导管在临床中的使用及护理课件
- 调料厂工作管理制度
- 2023年MRI技术操作规范
- 小学英语单词汇总大全打印
- 卫生健康系统安全生产隐患全面排查
- GB/T 15114-2023铝合金压铸件
- 三相分离器原理及操作
- 货物验收单表格模板
- 600字A4标准作文纸
- GB/T 18015.2-2007数字通信用对绞或星绞多芯对称电缆第2部分:水平层布线电缆分规范
评论
0/150
提交评论