安徽省合肥市新城高升学校2025届数学高一上期末联考试题含解析_第1页
安徽省合肥市新城高升学校2025届数学高一上期末联考试题含解析_第2页
安徽省合肥市新城高升学校2025届数学高一上期末联考试题含解析_第3页
安徽省合肥市新城高升学校2025届数学高一上期末联考试题含解析_第4页
安徽省合肥市新城高升学校2025届数学高一上期末联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市新城高升学校2025届数学高一上期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,2.设,,,则a、b、c的大小关系是A. B.C. D.3.若函数的定义域为,则为偶函数的一个充要条件是()A.对任意,都有成立;B.函数的图像关于原点成中心对称;C.存在某个,使得;D.对任意给定的,都有.4.下列根式与分数指数幂的互化正确的是()A. B.C. D.5.()A. B.3C.2 D.6.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.7.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.8.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度()注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取等于3进行计算A.30密位 B.60密位C.90密位 D.180密位9.下列函数中,是幂函数的是()A. B.C. D.10.函数y=ln(1﹣x)的图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与平行,则的值为_________.12.已知函数,那么_________.13.已知函数,,则函数的最大值为______.14.新高考选课走班“3+1+2”模式指的是:语文、数学、外语三门学科为必考科目,物理、历史两门科目必选一门,化学、生物、思想政治、地理四门科目选两门.已知在一次选课过程中,甲、乙两同学选择科目之间没有影响,在物理和历史两门科目中,甲同学选择历史的概率为,乙同学选择物理的概率为,那么在物理和历史两门科目中甲、乙两同学至少有1人选择物理的概率为______15.函数的最小正周期是__________16.已知,则的大小关系是___________________.(用“”连结)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数图象经过原点,函数是偶函数,方程有两相等实根.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围;(3)若函数与的图像有且只有一个公共点,求实数的取值范围.18.设1若对任意恒成立,求实数m的取值范围;2讨论关于x的不等式的解集19.已知的顶点,边上的高所在直线的方程为,边上中线所在的直线方程为(1)求直线的方程;(2)求点的坐标.20.已知,,(1)用,表示;(2)求21.运货卡车以千米/时的速度匀速行驶300千米,按交通法规限制(单位千米/时),假设汽车每小时耗油费用为元,司机的工资是每小时元.(不考虑其他因所素产生的费用)(1)求这次行车总费用(元)关于(千米/时)的表达式;(2)当为何值时,这次行车的总费用最低?求出最低费用的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】通过向量之间的关系将转化到平行四边形边上即可【详解】由题意可得,同理:,所以所以,故选B.【点睛】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换2、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等3、D【解析】利用偶函数的定义进行判断即可【详解】对于A,对任意,都有成立,可得为偶函数且为奇函数,而当为偶函数时,不一定有对任意,,所以A错误,对于B,当函数的图像关于原点成中心对称,可知,函数为奇函数,所以B错误,对于CD,由偶函数的定义可知,对于任意,都有,即,所以当为偶函数时,任意,,反之,当任意,,则为偶函数,所以C错误,D正确,故选:D4、B【解析】根据分数指数幂的运算性质对各选项逐一计算即可求解.【详解】解:对A:,故选项A错误;对B:,故选项B正确;对C:,不能化简为,故选项C错误;对D:因为,所以,故选项D错误.故选:B.5、D【解析】利用换底公式计算可得答案【详解】故选:D6、A【解析】作出图形,由向量加法的三角形法则得出可得出答案.【详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.7、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D8、A【解析】求出1密位对应的弧度,进而求出转过的密位.【详解】有题意得:1密位=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以,因为,所以迫击炮转动的角度为30密位.故选:A9、B【解析】根据幂函数的定义辨析即可【详解】根据幂函数的形式可判断B正确,A为一次函数,C为指数函数,D为对数函数故选:B10、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.12、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:313、##【解析】根据分段函数的定义,化简后分别求每段上函数的最值,比较即可得出函数最大值.【详解】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:14、【解析】至少1人选择物理即为1人选择物理或2人都选择物理,由题分别得到甲选择物理的概率与乙选择历史的概率,进而求解即可.【详解】由题,设“在物理和历史两门科目中甲、乙两同学至少有1人选择物理”事件,则包括有1人选择物理,或2人都选择物理,因为甲同学选择历史的概率为,则甲同学选择物理的概率为,因为乙同学选择物理的概率为,则乙同学选择历史的概率为,故,故答案为:15、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:16、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)运用待定系数法,结合题目条件计算得,(2)分离参量,计算在上的最大值(3)转化为有且只有一个实数根,换元,关于的方程只有一个正实根,转化为函数问题解析:(1)设.由题意,得.∴,∵是偶函数,∴即.①∵有两相等实根,∴且②由①②,解得,∴.(2)若对任意,恒成立,只须在恒成立.令,,则.若对任意,恒成立,只须满足.∴.(3)函数与的图像有且只有一个公共点,即有且只有一个实数根,即有且只有一个实数根.令,则关于的方程(记为式)只有一个正实根.若,则不符合题意,舍去.若,则方程的两根异号,∴即.或者方程有两相等正根.解得∴.综上,实数取值范围是.点睛:本题是道综合题18、(1);(2)见解析.【解析】1由题意可得对恒成立,即有的最小值,运用基本不等式可得最小值,即可得到所求范围;2讨论判别式小于等于0,以及判别式大于0,由二次函数的图象可得不等式的解集【详解】1由题意,若对任意恒成立,即为对恒成立,即有的最小值,由,可得时,取得最小值2,可得;2当,即时,的解集为R;当,即或时,方程的两根为,,可得的解集为【点睛】本题主要考查了不等式的恒成立问题,以及一元二次不等式的解法,注意运用转化思想和分类讨论思想方法,考查运算能力,属于中档题19、(1);(2)【解析】(1)由,知两条直线的斜率乘积为-1,进而由点斜式求直线即可;(2)设,则,代入方程求解即可.试题解析:(1)∵,且直线的斜率为,∴直线的斜率为,∴直线的方程为,即(2)设,则,∴,解得,∴20、(1)(2)【解析】先把指数式化为对数式求出的值,再利用对数的运算性质进行求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论