重难点01十种一元二次方程应用问题(原卷版)_第1页
重难点01十种一元二次方程应用问题(原卷版)_第2页
重难点01十种一元二次方程应用问题(原卷版)_第3页
重难点01十种一元二次方程应用问题(原卷版)_第4页
重难点01十种一元二次方程应用问题(原卷版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点01十种一元二次方程应用问题技巧技巧方法1、比赛问题:解决此类问题的关键是分清单循环和双循环

.2、传播问题:,a表示传染前的人数,x表示每轮每人传染的人数,n表示传染的轮数或天数,A表示最终的人数.3、增长(降低)率问题基本公式:.表示增长(降低)前的数,表示增长(降低)率,表示增长(降低)后的数,要列出这类方程关键在于找出、.4、面积问题:判断清楚要设的未知数是关键点,找出题目中的等量关系,列出方程.5、数字问题:主要考察的是对数的表示如:两位数=十位数字10+个位数字;三位数=百位数字100+十位数字10+个位数字.6、利率问题基本公式:利息=本金*利率*期数7、利润问题基本公式:单件利润=售价成本;利润=(售价成本)销售的件数.8、动态几何类问题:(1)若动态图形比较特殊,思考用基本几何图形的面积公式找等量关系列方程或函数关系式;

(2)如动态图形不特殊,则思考用组合图形的面积和差找等量关系列方程或函数关系式能力拓展能力拓展题型一:传播问题一、单选题1.(2022·四川乐山·九年级期末)新冠肺炎病毒传染性很强,一个人感染新冠肺炎病毒后会感染一批人,我们称为第一轮传播,如果不加控制,这个人与第一批感染的人一起再感染下一批人,我们称为第二轮传播.某地一人感染后经过两轮传播,被感染的总人数达到121人,设每轮传播中平均一个人会感染x个人,则下列方程正确的是(

)A. B.C. D.2.(2022·贵州毕节·二模)早期,甲肝流行,在一天内,一人能传染4人,若有三人患上甲肝,那么经过两天患上甲肝的人数为(

)A.50 B.75 C.25 D.703.(2022·福建厦门·九年级期末)冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x只动物,则下面所列方程正确的是(

)A.3x(x+1)=363 B.3+3x+3x²=363C.3(1+x)²=363 D.3+3(1+x)+3(1+x)²=3634.(2022·黑龙江齐齐哈尔·九年级期末)2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病,感染者的临床表现为:以发热、乏力、干咳为主要表现,在“新冠”初期,有1人感染了“新冠”,经过两轮传染后共有144人感染了“新冠”(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了(

)A.10人 B.11人 C.12人 D.13人5.(2022·全国·九年级)爷爷的生日晚宴上,大家两两碰杯一次,总共碰杯45次,那么有几人参加了这次宴会?(

)A.8人 B.9人 C.10人 D.11人二、填空题6.(2022·黑龙江哈尔滨·一模)2022年春季,新一轮的新冠病毒的传染性极强,莱市某社区因1人患了新冠肺炎没有及时隔离治疗,经过两轮的传染后,共有25人患了新冠肺炎,每轮平均1人感染了_____________个人.7.(2022·江西上饶·九年级期末)新冠病毒传染性很强,如不注重个人防疫,有一个人感染,经过两轮传染后共有144人会被感染.若设平均每轮传染x人,则可列方程为______.三、解答题8.(2022·广西南宁·一模)有两个人患了流感,经过两轮传染后共有242人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)若一个患流感的人打一个喷嚏喷出的病毒粒子(忽略触角近似于球体)达8000万个,且该流感病毒粒子的直径为160纳米.请完成下列填空及问题:①用科学记数法表示数据8000万个为__________个;②如图,若把8000万个病毒粒子最大纵切面圆面相切放在一条直线上,求这些病毒粒子纵切面的总直径是多少米?(参考数据:1纳米米)9.(2022·全国·九年级)流行病学中有一个叫做基本传染数R0的数字,简单来说,就是一个人在一个周期内会感染几个人,有一个人感染了新冠病毒,经过两个周期的传染后共有36人感染,求新冠病毒的基本传染数R0.10.(2022·安徽·宣城市宣州区卫东学校一模)德尔塔是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有人感染了德尔塔病毒,设每轮传染中平均一个人传染了个人;(1)用含的代数式表示:经过第一轮传染后,共有多少人感染了德尔塔病毒?(2)列方程求解:在每轮传染中,平均一个人传染了几个人?(3)如果按照这样的传染速度,经过三轮传染后,一共有多少人感染德尔塔病毒?11.(2022·湖北武汉·九年级期末)R0,也叫基本传染数,或者基本再生数,英文为Basicreproductionnumber.更确切的定义是:在没有外力介入,所有人都没有免疫力的情况下,一个感染某种传染病的人,总共会传染给其他多少个人的平均数.例如:有1人感染新型冠状病毒,若R0=3.50,则经两轮传染后感染新型冠状病毒的人数为:1+1×3.50+1×3.50×3.50≈17(人).时下人心惶惶的新型冠状病毒的基本传染数据估计为3.30到5.40之间.请解答下列问题:(1)若现有10人感染新型冠状病毒,则经历两轮传染后,感染新型冠状病毒的人数大约在什么范围内(直接写出结果,结果保留整数)?(2)最近,新型冠状病毒变异出德尔塔毒株,德尔塔变异病毒的R0值极高.若1人患病,在无任何外力影响下经历两轮传染后共有73人感染.①求德尔塔变异病毒的R0值;②国家研制出新冠疫苗后发现,通过接种疫苗可以使得R0值随接种人数比例的增高同步降低.例如,当疫苗全民接种率达到40%时,此时的R0值为:R0(1﹣40%)=0.6R0.若有1人感染德尔塔变异病毒,要在两轮内将总感染人数控制在7人以内,再加以隔离等措施的干涉,就可控制住疫情,则全民接种率至少应该达到多少?题型二:增长率问题一、单选题1.(2022·广西河池·九年级期末)某品牌电动自行车经销商1月至3月统计,该品牌电动自行车1月销售150辆,3月销售216辆.设该品牌电动车销售量的月平均增长率为x,根据题意列方程得(

)A. B.C. D.2.(2022·浙江杭州·八年级期末)2022年北京冬奥会吉祥物“冰墩墩”敦厚可爱,深受大家欢迎.某生产厂家1月份平均日产量为20000个,随着冬奥会的举行,“冰墩墩”一路走红,供不应求.为满足市场需求,工厂决定扩大产能,3月份平均日产量达到33800个,设1至3月份冰墩墩日产量的月平均增长率为,则可列方程为(

)A. B.C. D.3.(2022·全国·九年级专题练习)某商品价格经历了两次上调,其中第二次增长率是第一次增长率的一半.若第一次上调前价格为a元,第一次增长率为x,则经历两次上调后的价格为(

).A. B.C. D.4.(2022·四川绵阳·三模)2022年2月6日,中国女足获得亚洲杯冠军!某传媒发布的参赛队员简介视频两天的点击量由原来的5万飙升至150万,若设每天点击量的平均增长率为x,则下列所列方程正确的是(

)A.5(1+x)2=150 B.5+5(1+x)+5(1+x)2=150C.5x2=150 D.5+5x+5x2=150二、填空题5.(2022·浙江·宁波市镇海教师进修学校一模)某种商品原价50元,因销售不畅,3月份降价10%后,销量大增,4、5两月份又连续涨价,5月份的售价为64.8元,则4、5月份两个月平均涨价率为______.三、解答题6.(2022·陕西西安·九年级期末)陕西重型汽车(简称陕汽重卡)是由湘火炬汽车集团股份与陕西汽车集团有限责任公司合资组建的大型汽车公司企业,该企业随着生产技术的不断提升,生产的某款汽车的价格由2021年8月份的39万元/辆下降到10月份的31.59万元/辆,若月平均降价的百分率保持不变,试求月平均降价率.7.(2022·山东济南·八年级期末)疫情期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为.(1)求的值.(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么?8.(2022·安徽合肥·八年级期末)2022年2月4日至20日,第24届冬奥会在北京和张家口举办,这是中国历史上第一次举办冬奥会,吉祥物“冰墩墩”深受大家的喜爱.某厂家1月份生产10万个“冰墩墩”,1月底因市场对“冰墩墩"需求量大增,为满足市场需求,工厂决定从2月份开始扩大产量,3月份产量达到12.1万个.已知2月份和3月份产量的月平均增长率相同.(1)求“冰墩墩”产量的月平均增长率;(2)按照(1)中的月平均增长率,预计4月份的产量为多少个?9.(2022·重庆市育才中学三模)重庆地铁18号线一共设站29座,总投资约102亿元其中,杨家坪与石坪桥区何标段隧道总长1000米,由于此标段经过商圈和高层密集区域,隧道挖掘难度大.为了协助九龙坡区争创“全国文明城区”,尽快完成标段的施工,施工单位加快了此标段隧道挖掘速度.(1)若施工单位将挖掘速度提升到了原速度的倍,则比原计划提前50天完成隧道挖掘任务.求原计划每天挖掘继道多少米?(2)2021年初工程队开始进行隧道挖掘工作,按照(1)中提速后的速度挖掘隧道,每天挖掘隧道的费用为40万元.隧道挖通后,施工单位进行其他项目的施工,到2021年底,其他项目施工总费用为2000万元.为了尽快完成所有工程,施工单位计划在2021年总投资额(即挖掘隧道总费用和其他项目总费用之和)基础上继续增加投资额,预计从2021年初到2023年底,三年累计共完成4.75亿元的投资额.设2022年和2023年这两年的总投资额年平均增长率为m,求m的值.10.(2022·河北·石家庄市第四十一中学一模)2021年11月5日至10日第四届中国国际进口博览会在上海举行,意向成交707.2亿美元,彰显了中国的经济实力和人民生活品质的提升.某省采购团5号意向成交亿美元,6、7号意向成交价平均每天以的增长率递增.(1)707.2亿用科学记数法表示为_________;(2)该省采购团7号意向成交_________亿美元;(用含、的代数式表示)(3)该省采购团57号意向成交共16.55亿美元,若,求的值.题型三:与图形有关的问题一、单选题1.(2022·浙江杭州·二模)如图所示,某景区内有一块长方形油菜花田地(单位:m),现在其中修建一条观花道(阴影部分)供游人赏花,要求观花道的面积占长方形油菜花田地面积的.设观花道的直角边(如图所示)为x,则可列方程为()A.(10+x)(9+x)=30 B.(10+x)(9+x)=60C.(10x)(9x)=30 D.(10x)(9x)=602.(2022·全国·九年级课时练习)如图是某公园在一长35m,宽23m的矩形湖面上修建的等宽的人行观景曲桥,它的面积恰好为原矩形湖面面积的,求人行观景曲桥的宽.若设人行观景曲桥的宽为xm,则x满足的方程为(

)A. B.C. D.3.(2022·河南洛阳·一模)春意复苏,郑州绿化工程正在如火如荼地进行着,某工程队计划将一块长64m,宽40m的矩形场地建设成绿化广场如图,广场内部修建三条宽相等的小路,其余区域进行绿化.若使绿化区域的面积为广场总面积的80%,求小路的宽,设小路的宽为xm,则可列方程(

)A.B.C.D.二、解答题4.(2022·湖北恩施·九年级期末)小明家新房客厅背景墙是一幅八骏图,原图(如图1)长宽分别是40分米和16分米,为了更美观,现在原图的四周用等宽的木条进行装裱(如图2),装裱后面积增加116平方分米,求木条的宽度.5.(2022·重庆市开州区德阳初级中学九年级阶段练习)为了进一步改善生态环境,开州区政府拟对总面积为19000平方米的某公园进行绿化升级.某施工队按计划施工10天后,区政府要求绿化工程必须在15天内完成,于是该施工队将每天的绿化任务提高了80%,圆满的在规定期限内完成了任务.(1)该工程队原计划每天的绿化任务至少是多少平方米?(2)如图,在绿化过程中,欲修建一个中间隔有一道篱笆,面积为180平方米的长方形花圃ABCD,该花圃一面靠墙(墙的最大可用长度为18米),其余部分由篱笆围成.为了进出方便,在实际修建过程中,除墙外的其他各边都用木质材料共修建了5个宽都为1米的小门,剩余部分刚好用完总长为43米的篱笆,那么该花圃的长和宽各应设计为多少米?6.(2022·全国·九年级)根据下列提示列方程,并将其化为一元二次方程的一般形式.(1)已知两个数的和为7,积为6,求这两个数;(2)如图,在一块正方形纸板的四个角上截去四个相同的边长为2厘米的小正方形,然后把四边折起来,做成一个没有盖的长方体盒子,使它的容积为32立方厘米.所用的正方形纸板的边长应是多少厘米?7.(2022·山西·二模)如图,矩形是某会展中心一楼展区的平面示意图,其中边的长为40米,边的长为25米,该展区内有三个全等的矩形展位,每个展位的面积都为200平方米,阴影部分为宽度相等的人行通道,求人行通道的宽度.8.(2022·广东深圳·二模)【问题提出】如图(1),每一个图形中的小圆圈都按一定的规律排列,设每条边上的小圆圈个数为a,每个图形中小圆圈的总数为S.请观察思考并完成以下表格的填写:a12345…8…S136……【变式探究】请运用你在图(1)中获得的经验,结合图(2)中小圆圈的排列规律,写出第n个图形的小圆圈总数S与n之间的关系式.【应用拓展】生物学家在研究时发现,某种细胞的分裂规律可用图(3)的模型来描述,请写出经过n轮分裂后细胞总数W与n的关系式.并计算经过若干轮分裂后,细胞总数能否达到1261个,若能,求出n的值;若不能,说明理由.9.(2022·湖北襄阳·九年级期末)某中学准备利用围墙的一段MN,再砌三面墙围成一个如图所示的矩形花园ABCD(围墙最多可利用25米).已知三面围墙的总长度为40米.(1)要使矩形花园的面积为150平方米,则AB的长度为多少米?(2)在条件不变的情况下,有人提议要围成面积为210平方米的花园,这个提议是否可行?为什么?题型四:数字问题一、填空题1.(2022·山东烟台·八年级期末)小明在计算某数的平方时,将这个数的平方误看成它的2倍,使答案少了35,则这个数为_________.2.(2022·全国·九年级课时练习)《念奴娇•赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”若设这位风流人物去世的年龄十位数字为x,则可列方程为____.二、解答题3.(2022·湖南株洲·九年级期末)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).题型五:营销问题一、解答题1.(2022·全国·九年级课时练习)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩嫩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?2.(2022·上海闵行·二模)北京冬奥会期间,海内外掀起一股购买冬奥会吉祥物“冰墩墩”的热潮.某玩具厂接到6000箱“冰墩墩”的订单,需要在冬奥会闭幕之前全部交货.为了尽快完成订单,玩具厂改良了原有的生产线,每天可以多生产20箱“冰墩墩”,结果提前10天完成任务,求该玩具厂改良生产线前每天生产多少箱“冰墩墩”?3.(2022·全国·九年级)30元的衣服,以50元出售,平均每月能售出300件.经试销发现每件衣服涨价1元,其月销售量就减少1件,物价部门规定,每件衣服售价不得高于80元,为实现每月利润8700元,应涨价多少元?4.(2022·重庆北碚·模拟预测)某水果店以每千克30元出售一批草莓.一位顾客购买了2千克草莓,水果店获得利润20元.(1)求草莓的进价为每千克多少元?(2)已知该水果店第一天以每千克30元的单价售出草莓30千克.为了让顾客获得实惠,第二天水果店决定把草莓降价促销,若在第一天销售单价的基础上每降价1元,第二天的草莓销量就会在第一天销量的基础上增加6千克.通过这两天的销售,这批草莓全部售完,水果店销售完这批草莓的利润一共为600元,求第二天的草莓每千克降价多少元?5.(2022·上海市进才实验中学九年级期中)某商场为迎接端午节,对销售粽子开展了一种促销活动.规则如下:如果顾客一次消费不超过一个定额M,那么就不优惠,原价付款;如果超过这个定额M,不超过部分不优惠,但超过部分会进行优惠,超过部分每元钱商品只需付元.已知小李消费了200元,实际只支付了176元;小张消费了75元,实际支付了75元.(1)根据以上信息,请确定M的值;(2)若小刘消费了580元,那么他实际支付可以少多少钱?6.(2022·广东·二模)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某学校欲购买篮球、足球共60个用于学生课外活动,要求采购总费用不超过3200元.已知篮球单价80元,足球单价40元.(1)最多能购买篮球多少个?(2)若篮球单价降低a元,足球单价降低10元,篮球的购买量在第(1)问最大购买量的基础上增加2a个,但篮球、足球的购买总数保持不变.若采购的总费用为3150元,则a的值为多少?7.(2022·陕西·模拟预测)2022春季直播带货节以“直播惠民生·醉美长安城”为主题,通过网络直播的方式向大家展销陕西特色产品,助力“陕西好物”走向全国.已知某非遗文创产品每件成本为50元,当售价为元时,平均每月售出件,通过市场调查发现,若售价每上涨1元,其月销售量就减少件.为了更多地让利于消费者,求当月销售利润为元时,每件非遗文创产品的售价.题型六:动态几何问题一、单选题1.(2022·全国·九年级课时练习)如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(

)A. B. C. D.二、填空题2.(2022·全国·九年级课时练习)如图①,在矩形中,,对角线,相交于点,动点由点出发,沿向点运动设点的运动路程为,的面积为,与的函数关系图象如图②所示,则的长为______.三、解答题3.(2022·广东·九年级专题练习)上午8点,某台风中心在A岛正南方向处由南向北匀速移动,同时在A岛正西方向处有一艘补给船向A岛匀速驶来,补给完后改变速度立即向A岛正北方向的C港匀速驶去,如图所示是台风中心、补给船与A岛的距离S和时间t的图象.已知台风影响的半径是(包含边界),请结合图象解答下列问题:(1)台风的速度是_________,补给船在到达A岛前的速度是_________,图中点P的实际意义是_______________;(2)从几点开始,补给船将受到台风的影响?(3)设补给船驶出A岛到驶到C港之前受到台风影响的时间为a小时,出于安全考虑,补给船速度不超过、.求出图中补给船航行时间m的正整数值及此时补给船在驶入C港之前受台风影响的总时间.4.(2022·全国·九年级课时练习)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.(1)BP=cm;BQ=cm;(用t的代数式表示)(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?5.(2022·山东淄博·九年级期中)如图,在直角梯形中,,,,,.动点从点出发,沿射线的方向以每秒2个单位的速度运动,动点从点出发,沿射线的方向以每秒1个单位的速度向点运动,点,分别从点,同时出发,当点运动到点时,点随之停止运动.设运动的时间为(秒),当为何值时,以,,三点为顶点的三角形是等腰三角形?6.(2022·全国·九年级课时练习)中,,,,点P从点A开始沿边向终点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边向终点C以2cm/s的速度移动.如果点P、Q分别从点A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:________,________(用含t的代数式表示);(2)是否存在t的值,使得的面积等于?若存在,请求出此时t的值;若不存在,请说明理由.题型七:工程问题一、单选题1.(2022·全国·九年级专题练习)岐山县体育局要组织一次中小学篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?则下列方程正确的是(

)A.x(x1)=28 B.x(x+1)=28C.2x(x1)=28 D.x(x1)=28二、解答题2.(2022·全国·九年级专题练习)“端午临中夏,时清日复长”.临近端午节,一网红门店接到一批3200袋粽子的订单,决定由甲、乙两组共同完成.已知甲组3天加工的粽子数比乙组2天加工的粽子数多300袋.两组同时开工,甲组原计划加工10天、乙组原计划加工8天就能完成订单.(1)求甲、乙两组平均每天各能加工多少袋粽子;(2)两组人员同时开工2天后,临时又增加了500袋的任务,甲组人员从第3天起提高了工作效率,乙组的工作效率不变.经估计,若甲组平均每天每多加工100袋粽子,则甲、乙两组就都比原计划提前1天完成任务.已知甲、乙两组加工的天数均为整数,求提高工作效率后,甲组平均每天能加工多少袋粽子?3.(2022·全国·九年级专题练习)随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的和.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了,漫灌试验田的面积减少了.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了.经测算,今年的灌溉用水量比去年减少,求的值.(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元.在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?4.(2022·重庆市第七中学校一模)甲、乙两工程队共同承建某高速铁路桥梁工程,桥梁总长5000米.甲,乙分别从桥梁两端向中间施工.计划每天各施工5米,因地质情况不同,两支队伍每合格完成1米桥梁施工所需成本不一样.甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米桥梁施工成本为12万.(1)若工程结算时,乙总施工成本不低于甲总施工成本的,求甲最多施工多少米.(2)实际施工开始后,因地质情况及实际条件比预估更复杂,甲乙两队每日完成量和成本都发生变化,甲每合格完成1米隧道施工成本增加a万元时,则每天可多挖米.乙在施工成本不变的情况下,比计划每天少挖米.若最终每天实际总成本在少于150万的情况下比计划多万元.求a的值.5.(2022·重庆巴蜀中学二模)为了提升干线公路美化度,相关部门拟定派一个工程队对39000米的公路进行路面“白改黑”工程.该工程队计划使用一大一小两种型号设备交替的方式施工,原计划小型设备每小时铺设路面30米,大型设备每小时铺设路面60米.(1)由于小型设备工作效率较低,该工程队计划使用大型设备的时间比使用小型设备的时间多,当这个工程完工时,小型设备的使用时间为多少小时?(2)通过勘察、又新增了部分支线公路美化,结果此工程的实际施工里程比最初拟定的里程39000米多了9000米,于是在实际施工中,小型设备在铺设公路效率不变的情况下,使用时间比原计划增加了18m小时,同时,因为新增的工人操作大型设备不够熟练,使得比原计划每小时下降了m米,使用时间增加了小时,求m的值.6.(2022·重庆十八中两江实验中学一模)某公司主营铁路建设施工.(1)原计划今年一季度施工里程包括平地施工,隧道施工和桥梁施工共146千米,其中平地施工106千米,隧道施工至少是桥梁施工的9倍,那么,原计划今年一季度,桥梁施工最多是多少千米?(2)到今年3月底,施工里程刚好按原计划完成,且桥梁施工的里程数正好是原计划的最大值,已知一季度平地施工,隧道施工和桥梁施工每千米的成本之比1:3:10,总成本为254亿元,预计二季度平地施工里程会减少7a千米,隧道施工里程会减少2a千米,桥梁施工里程会增加a千米,其中平地施工,隧道施工每千米的成本与一季度持平,桥梁施工每千米的成本将会增加a亿元,若二季度总成本与一季度相同,求a的值.7.(2022·福建·模拟预测)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求的n值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;8.(2022·全国·九年级)随着新冠病毒在全世界蔓延,口罩成为紧缺物资,甲、乙两家工厂积极响应政府号召,准备跨界投资生产口罩.根据市场调查,甲、乙两家工厂计划每天各生产6万片口罩,但由于转型条件不同,其生产的成本不一样,甲工厂计划每生产1万片口罩的成本为0.6万元,乙工厂计划每生产1万片口罩的成本为0.8万元.(1)按照计划,甲、乙两家工厂共生产2000万片口罩,且甲工厂生产口罩的总成本不高于乙工厂生产口罩的总成本的,求甲工厂最多可生产多少万片的口罩?(2)实际生产时,甲工厂完全按计划执行,但乙工厂的生产情况发生了一些变化.乙工厂实际每天比计划少生产0.5m万片口罩,每生产1万片口罩的成本比计划多0.2m万元,最终乙工厂实际每天生产口罩的成本比计划多1.6万元,求m的值.9.(2022·重庆十八中两江实验中学一模)甲、乙两工程队共同承建某高速路隧道工程,隧道总长2000米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质情况不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米,隧道施工成本为6万元;乙每合格完成1米,隧道施工成本为8万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的,求甲最多施工多少米?(2)实际施工开始后因地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m万元时,则每天可多挖m米,乙因特殊地质,在施工成本不变的情况下,比计划每天少挖m米,若最终每天实际总成本比计划多(11m8)万元,求m的值.题型八:行程问题一、单选题1.(2022·全国·九年级专题练习)小球以的速度在平坦地面上开始滚动,并且均匀减速,后小球停下来.小球滚动到时约用了多少时间(精确到)?(

)A. B. C. D.二、填空题2.(2022·全国·九年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问甲走的步数是__.三、解答题3.(2022·全国·九年级专题练习)一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后又滑行25m后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?4.(2022·全国·九年级)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟.题型九:图表信息题一、单选题1.(2022·全国·九年级专题练习)根据下表提供的信息,一元二次方程的解大概是(

)23456513A.0 B.3.5 C.3.8 D.4.5二、填空题2.(2022·全国·九年级专题练习)有支球队参加篮球比赛,每两队之间都比赛一场,共比赛了45场,则根据题意列出方程__.三、解答题3.(2022·全国·九年级专题练习)某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.(1)若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:月份用水量(吨)交水费总金额(元)4186252486根据上表数据,求规定用水量a的值4.(2022·江苏·九年级专题练习)请阅读下列材料,并按要求完成相应的任务:人类对一元二次方程的研究经历了漫长的岁月.一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家花拉子米在他的代表作《代数学》中给出了一元二次方程的一般解法,并用几何法进行了证明.我国古代三国时期的数学家赵爽也给出了类似的几何解法.赵爽在其所著的《勾股圆方图注》中记载了解方程即得方法.首先构造了如图1所示得图形,图中的大正方形面积是,其中四个全等的小矩形面积分别为,中间的小正方形面积为,所以大正方形的面积又可表示为,据此易得.任务:(1)参照上述图解一元二次方程的方法,请在下面三个构图中选择能够说明方程的正确构图是(从序号①②③中选择).(2)请你通过上述问题的学习,在图2的网格中设计正确的构图,用几何法求解方程(写出必要的思考过程).5.(2022·湖北宜昌·九年级期末)某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过度,那么这个月这户居民只交10元电费;如果超过度,这个月除了交10元电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了度的规定,试写出超过部分应交的电费.(用含的代数式表示)(2)下表是这户居民2月、3月的用电情况,请根据其中的数据,求电厂规定的度是多少.月份用电量/度交电费总数/元2月80253月4510题型十:其他问题一、单选题1.(2022·全国·九年级专题练习)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?(

)A.8 B.10 C.7 D.92.(2022·全国·九年级专题练习)把48张图片平均分给若干名学生,每人分得的图片数比学生人数少2.设学生有人,则可列方程为(

)A. B.C. D.3.(2022·全国·九年级课时练习)距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A.7人 B.6人 C.5人 D.4人二、填空题4.(2022·全国·九年级课时练习)2022年女足亚洲杯在2022年1月20日至2月6日举行,由小组赛和淘汰赛组成.按比赛规则小组赛赛制为单循环赛制(即每个小组的两个球队之间进行一场比赛),在小组赛阶段,中国队凭借着小组赛比赛前几个场次的赢球,成为最先获得八强资格的球队,并在2022年2月6日的亚洲杯决赛中以3∶2战胜韩国女足,获得亚洲杯冠军.已知中国女足队所在的A组共安排了6场比赛,则中国女足所在的A组共有______支球队.5.(2022·江苏·九年级专题练习)新冠肺炎全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论