数学同步训练:函数的表示方法_第1页
数学同步训练:函数的表示方法_第2页
数学同步训练:函数的表示方法_第3页
数学同步训练:函数的表示方法_第4页
数学同步训练:函数的表示方法_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2.1.2函数的表示方法5分钟训练1.一个面积为100cm2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高y表示成x的函数为()A.y=50x(x>0)B.y=100x(x>0)C.y=(x>0)D。y=(x>0)答案:C解析:由·y=100,得2xy=100.∴y=(x>0).2.小明离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程(跑步的速度与步行的速度均为定值)。若以纵轴表示离家的路程,路程用d表示;横轴表示出发后的时间,时间用t表示,则下列图形中能反映小明运动规律的是()答案:D解析:因为跑步的速度与步行的速度均为定值,且前者大,故选D。3.设一个函数的解析式为f(x)=2x+1,它的值域为{—1,2,3},则该函数的定义域为_____________.答案:{—1,,1}解析:f(x)=2x+1是单调函数,令2x+1=-1,2,3,得x=—1,,1。4。已知函数f(x)=则f[f(—1)]的值是______________。答案:π解析:分段函数是一个函数而不是几个函数,求函数值时,首要的是确定自变量的数值属于哪一个区间段,从而选取相应的对应法则。f(-1)=0,f(0)=π,由此可得结果.10分钟训练1。等腰三角形的周长是20,底边长y是一腰长x的函数,则y=f(x)等于()A.20-2x(0<x≤10)B.20—2x(0<x〈10)C.20-2x(5≤x≤10)D。20—2x(5〈x<10)答案:D解析:函数的定义域易写成得0<x〈10,而错选B。因由构成三角形的条件可知2x〉20-2x,得x>5.所以函数的定义域为{x|5〈x〈10}。2.如图,在△ABC中,底BC=a,高AD=h,MNPQ为一边在底边上的内接矩形,设MN=x,矩形周长为y,把y表示成x的函数应为()A。y=2(a+x)(0<x<h)B.y=(a+x)(x〉0)C.y=2(a+x)(0<x≤)D.y=(a+x)(0〈x〈h)答案:A解析:由平行线分线段成比例定理,得,即.解得MQ=。∴y=2[x+]=2(a+x).由MQ〉0,得x〈h.又∵x〉0,∴0<x〈h。3。设M={x|—2≤x≤2},N={y|0≤y≤2},如图给出4个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()答案:B解析:要构成函数必须是定义域中的每一个自变量值对应唯一一个函数值.A中,当0<x≤2时,N中没有元素与x对应,不符合函数概念。C中每个x值有两个y值与之对应,也不符.D中的对应是映射,值域与要求不符.故选B。4。已知函数f(x)的图象如右图所示,则f(x)的函数解析式是____________.答案:f(x)=解析:f(x)的图象由两条线段组成,∴该函数是一分段函数,特别要注意端点值是否可以取到.5。已知函数f(x)=(1)画出函数的图象;(2)求f(1),f(-1),f[f(-1)]的值。解:(1)分别作出f(x)在x〉0,x=0,x<0段上的图象,如图,作法略。(2)f(1)=12=1,f(—1)==1,f[f(—1)]=f(1)=1。6.某人驱车以52千米/时的速度从A地驶往260千米远处的B地,到达B地并停留1.5小时后,再以65千米/时的速度返回A地.试将此人驱车走过的路程s表示为时间t的函数。解:从A地到B地,路上的时间为=5(小时);从B地回到A地,路上的时间为=4(小时).所以走过的路程s(千米)与t(小时)的关系为30分钟训练1.如图所示的图形中,不可能是函数y=f(x)的图象的是()答案:D解析:因为D中的一个变量x对应两个y值,所以它不表示函数.2。由于水污染日益严重,水资源变得日益短缺。为了节约用水,某市政府拟自2007年始对居民自来水收费标准调整如下:每户每月用水不超过4吨时,每吨6元;当用水超过4吨时,超过部分每吨增收3元。则某户居民所交水费y元与该月此户居民所用水量x吨之间的函数关系式为()A.y=6xB.y=C。y=D.y=9x—12答案:B解析:当用水量0≤x≤4时,水费y=6x;当用水量x>4时,水费y=24+9×(x-4)=9x—12。故选B。3。已知函数f(x)=(x≠),满足f[f(x)]=x,则c的值是()A.3B.-3C.3或-3答案:B解析:f[f(x)]=x(2c+6)=c2-9对任何x(x≠)成立,所以2c+6=c2-9=0,即c=-3。而≠,故所求c=-3.4。(创新题)某地2006年的降雨量p(x)与时间x的图象如图所示,定义“落量差函数"q(x)为时间段[0,x]内的最大降雨量与最小降雨量的差,则q(x)的图象可能是()答案:B解析:观察p(x)与时间x的图象可知,当x∈[0,6]时,q(x)随x增大而增大;当x∈(6,9)时,q(x)是常函数;当x∈[9,12]时,q(x)又随x增大而增大.5.如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是______________,这个函数的定义域为__________。答案:V=x(a—2x)2{x|0<x<}解析:据长方体的体积公式,易得V=x(a—2x)2,其中0<x<.6.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=—5,则f[f(5)]=___________.答案:解析:由f(x+2)=,得f(x+4)==f(x),所以f(5)=f(1)=—5,则f[f(5)]=f(-5)=f(—1)==.7.(探究题)设[x]是大于或等于x的最小正整数(即数x的整数部分),例如[4.25]=4,[0,82]=0,那么函数y=[]—[](x∈N)的值域为_____________。答案:{0,1}解析:当x=2k(k∈N)时,y==[k+]—[k]=k—k=0;当x=2k+1(k∈N)时,y==[k+1]-[k+]=(k+1)—k=1。所以所求函数的值域为{0,1}.8.如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并指出其定义域.解:由题意知此框架是由一个矩形和一个半圆组成的图形,而矩形的长AB=2x,宽为a,则有2x+2a+πx=l,即a=,半圆的直径为2x,半径为x。所以y=·2x=—()x2+lx。根据实际意义知>0,又∵x>0,∴0<x<,即函数y=—(2+)x2+lx的定义域是{x|0<x<}。9.动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A.设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图。解:(1)如图,当P在AB上运动时,PA=x;当P点在BC上运动时,由Rt△ABP可得PA=;当P点在CD上运动时,由Rt△ADP易得PA=;当P点在DA上运动时,PA=4—x.故f(x)的表达式为f(x)=(2)由于P点在折线ABCD上的位置不同,△ABP的形状各有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论