![2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题【含答案】_第1页](http://file4.renrendoc.com/view14/M07/3A/0F/wKhkGWcQO4CAekJhAAGFH27t1QY392.jpg)
![2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题【含答案】_第2页](http://file4.renrendoc.com/view14/M07/3A/0F/wKhkGWcQO4CAekJhAAGFH27t1QY3922.jpg)
![2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题【含答案】_第3页](http://file4.renrendoc.com/view14/M07/3A/0F/wKhkGWcQO4CAekJhAAGFH27t1QY3923.jpg)
![2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题【含答案】_第4页](http://file4.renrendoc.com/view14/M07/3A/0F/wKhkGWcQO4CAekJhAAGFH27t1QY3924.jpg)
![2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题【含答案】_第5页](http://file4.renrendoc.com/view14/M07/3A/0F/wKhkGWcQO4CAekJhAAGFH27t1QY3925.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2025届安徽省芜湖县联考数学九年级第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列分式是最简分式的是()A. B. C. D.2、(4分)如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.3、(4分)已知n是自然数,是整数,则n最小为()A.0 B.2 C.4 D.404、(4分)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30° B.35° C.40° D.45°5、(4分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明从图书馆回家的速度为0.8km/minC.食堂到图书馆的距离为0.8kmD.小明读报用了30min6、(4分)一元一次不等式组的解集在数轴上表示为().A. B.C. D.7、(4分)为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是()A.11,11 B.12,11 C.13,11 D.13,168、(4分)若关于的一元二次方程有实数根,则应满足()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果关于的不等式组无解,则的取值范围是_____.10、(4分)如图,在平面直角坐标系中,点在直线上,点关于轴的对称点恰好落在直线上,则的值为_____.11、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.12、(4分)已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.13、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q(1)求出点A的坐标;(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.15、(8分)(1)计算(结果保留根号);(2)分析(1)的结果在哪两个整数之间?16、(8分)在中,,以点为旋转中心,把逆时针旋转,得到,连接,求的长.17、(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)(1)试写出与之间的函数关系式:(2)求出自变量的取值范围;(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?18、(10分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2,则=________.20、(4分)比较大小:__________-1.(填“”、“”或“”)21、(4分)若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)22、(4分)若方程的两根为,,则________.23、(4分)将一个矩形纸片按如图所示折叠,若,则的度数是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:(1)点在上运动的时间为,在上运动的速度为(2)设的面积为,求当点在上运动时,与之间的函数解析式;(3)①下列图表示的面积与时间之间的函数图象是.②当时,的面积为25、(10分)绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?26、(12分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
解:A、=﹣1;B、;C、分子、分母中不含公因式,不能化简,故为最简分式;D、故选C.2、A【解析】
根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.3、C【解析】
求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.【详解】解:∵n是自然数,是整数,且211-n≥1.
∴(211-n)是完全平方数,且n≤211.
∴(211-n)最大平方数是196,即n=3.
故选:C.主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.4、B【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.【详解】解:由旋转可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故选B.本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.5、D【解析】
根据函数图象判断即可.【详解】小明吃早餐用了(25-8)=17min,A错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,B错误;
食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;
小明读报用了(58-28)=30min,D正确;
故选:D本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.6、A【解析】
根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,
解不等式②得:x≤2,
∴不等式组的解集是-1<x≤2,
表示在数轴上,如图所示:
.
故选:A.此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.7、D【解析】
众数是出现次数最多的数,中位数是把数据从小到大排列位置处于中间的数;【详解】将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;数据16出现的次数最多,故众数为16.故选:D.此题考查中位数,众数,解题关键在于掌握其定义.8、B【解析】
由方程有实数根,得到根的判别式的值大于等于0,列出关于A的不等式,求出不等式的解集即可得到a的范围.【详解】解:∵关于x的一元二次方程x2−2x+a=0有实数根,∴△=4−4a≥0,解得:a≤1;故选:B.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.二、填空题(本大题共5个小题,每小题4分,共20分)9、a≤1.【解析】
分别求解两个不等式,当不等式“大大小小”时不等式组无解,【详解】解:∴不等式组的解集是∵不等式组无解,即,解得:本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.10、1【解析】
由点A的坐标以及点A在直线y=-2x+3上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.【详解】解:点A在直线上,
,
点A的坐标为.
又点A、B关于y轴对称,
点B的坐标为,
点在直线上,
,解得:.
故答案为:1.本题考查了一次函数图象上点的坐标特征以及关于x、y轴对称的点的坐标,解题的关键是求出点B的坐标.解决该题型时,找出点的坐标,利用待定系数法求出函数系数是关键.11、【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.12、【解析】
把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.【详解】解:把(1,a)代入y=2x得a=2,所以方程组的解为.故答案为:.本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13、201【解析】
根据矩形的对角线相等且互相平分,即可得出结果.【详解】解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:
∵矩形的对角线互相平分且相等,
∴一条对角线用了20盆红花,
∴还需要从花房运来红花20盆;
如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:
一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,
∴还需要从花房运来红花1盆,
故答案为:20,1.本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.三、解答题(本大题共5个小题,共48分)14、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)【解析】
(1)求出直线l2的解析式为y=﹣x+1,即可求A的坐标;(2)设点P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P点坐标;(3)设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①当△PQM≌△BOQ时,PM=BQ,QM=OQ,结合勾股定理,求出m;②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,结合勾股定理,求出m即可.【详解】解:(1)∵直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,∴直线l2的解析式为y=﹣x+1,∵l2交x轴于点A,∴A(2,0);(2)当△APQ为以PQ为底边的等腰三角形时,∴AQ=AP,∵点P是直线l1上一动点,设点P(x,﹣x+2),∵过点P作PQ∥y轴交l2于点Q∴Q(x,﹣x+1),∴(﹣x+2)2=(﹣x+1)2,∴x=3,∴P(3,),Q(3,﹣);(3)∵点B为OA的中点,∴B(1,0),∴PQ=BO=1,设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),∴BQ=,OQ=,PM=,QM=,①∵△PQM与△BOQ全等,①当△PQM≌△BOQ时,有PM=BQ,QM=OQ,=,=,∴n=2m﹣2,∵点P在y轴的左侧,∴n<0,∴m<1,∴m=﹣1,∴M(﹣1,﹣1);②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,=,=,∴n=﹣m,∵点P在y轴的左侧,∴n<0,∴m>2,∴m=8,∴M(﹣1,8);综上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1个单位后,得到直线l2,本题考查一次函数的综合;熟练掌握一次函数的图象特点,等腰三角形与全等三角形的性质是解题的关键.15、(1);(2)【解析】
(1)先去括号,再将二次根式化简为最简二次根式,并合并;
(2)确认=27,再确认25<27<36,可得结论.【详解】解:原式,∴在和6之间.本题考查了二次根式的加减混合运算和无理数的估算,熟练掌握二次根式的运算法则是关键.16、【解析】
由旋转的性质得,由30°直角三角形的性质得,根据勾股定理,即可求出的长度.【详解】解:在中,,∵,又是由逆时针旋转得到的,,∴;本题考查了旋转的性质,直角三角形的性质,以及勾股定理,解题的关键是熟练掌握旋转的性质、直角三角形、以及勾股定理进行解题.17、(1)y与x之间的函数关系式是;(2)自变量x的取值范围是x=30,31,1;(3)生产A种产品30件时总利润最大,最大利润是2元,【解析】(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,
由题意得:y=700x+1200(50-x)=-500x+60000,
即y与x之间的函数关系式为y=-500x+60000;
(2)由题意得,
解得30≤x≤1.
∵x为整数,
∴整数x=30,31或1;
(3)∵y=-500x+60000,-500<0,
∴y随x的增大而减小,
∵x=30,31或1,
∴当x=30时,y有最大值为-500×30+60000=2.
即生产A种产品30件,B种产品20件时,总利润最大,最大利润是2元.“点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.18、(1)今年甲型号手机每台售价为1元;(2)共有5种进货方案.【解析】分析:(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.详解:(1)设今年甲型号手机每台售价为x元,由题意得,解得x=1.经检验x=1是方程的解.故今年甲型号手机每台售价为1元.(2)设购进甲型号手机m台,由题意得,17600≤1000m+800(20-m)≤18400,解得8≤m≤2.因为m只能取整数,所以m取8、9、10、11、2,共有5种进货方案.点睛:此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.【详解】因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.20、【解析】
先由,得到>,再利用两个负实数绝对值大的反而小得到结论.【详解】解:∵>,∴,∴>.故答案为:本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.21、=<【解析】
根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.22、1【解析】
解:∵∴∴或.∵,∴∴故答案为:1.23、40°【解析】
依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.【详解】解:如图所示,,,,由折叠可得,,,故答案为:.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.二、解答题(本大题共3个小题,共30分)24、(1)6,2;(2);(3)①C;②4或1.【解析】
(1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);(2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;(3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;②由题意分两种情况,即可得出结果.【详解】(1)由题意得:点在上运动的时间为,在上运动的速度为;故答案为:6,2;(2)当点在上运动时,由题意得:,,的面积为,即与之间的函数解析式为;(3)①当点在上运动时,与之间的函数解析式为;当点在上运动时,与之间的函数解析式为;当点在上运动时,与之间的函数解析式为,表示的面积与时间之间的函数图象是,故答案为:;②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年代理策划服务费用支付协议书样本
- 2025年协同研发合同模板
- 2025年宜昌道路客货运输从业资格证b2考试题库
- 2025年嘉兴货运从业资格证考试试题
- 特斯拉与松下签合作协议
- 2025年中国个人循环借款合同模板
- 2025年医疗人员劳务合同标准
- 2025年企业股本融资策划协议书
- 2025年科技有限公司合作合同
- 2025年合作伙伴入股协议规范
- 会计专业工作简历表(中级)
- 金融科技课件(完整版)
- 医院压力性损伤患者质控标准
- 人教版七年级上册数学试卷全册
- 医疗机构规章制度诊所诊所规章制度
- 六年级小升初语文试卷 [六年级下册语文小升初试卷
- 幼儿园中班开学第一课
- 饮品店操作流程图
- 风居住的街道钢琴二胡合奏谱
- PADS元件封装制作规范要点
- 胶水行业中最常用的英文术语
评论
0/150
提交评论