四川省华蓥一中2025届高一上数学期末学业水平测试试题含解析_第1页
四川省华蓥一中2025届高一上数学期末学业水平测试试题含解析_第2页
四川省华蓥一中2025届高一上数学期末学业水平测试试题含解析_第3页
四川省华蓥一中2025届高一上数学期末学业水平测试试题含解析_第4页
四川省华蓥一中2025届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省华蓥一中2025届高一上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的奇函数满足,且当时,,则()A. B.2C. D.2.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.3.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.4.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,25.如图所示,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,点Р的坐标为()A. B.C D.6.已知a>b,则下列式子中一定成立的是()A. B.|a|>|b|C. D.7.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC8.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.9.设a,b,c均为正数,且,,,则a,b,c的大小关系是()A. B.C. D.10.如图,一质点在半径为1的圆O上以点为起点,按顺时针方向做匀速圆周运动,角速度为,5s时到达点,则()A.-1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则_______;若,则实数的取值范围是__________12.已知点为角终边上一点,则______.13.化简:=____________14.已知圆,则过点且与圆C相切的直线方程为_____15.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.16.已知函数,若,,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.18.在①函数的图象向右平移个单位长度得到的图象,且图象关于原点对称;②向量,,,;③函数.在以上三个条件中任选一个,补充在下面问题中空格位置,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.19.函数在一个周期内的图象如图所示,O为坐标原点,M,N为图象上相邻的最高点与最低点,也在该图象上,且(1)求的解析式;(2)的图象向左平移1个单位后得到的图象,试求函数在上的最大值和最小值20.问题:是否存在二次函数同时满足下列条件:,的最大值为4,______?若存在,求出的解析式;若不存在,请说明理由.在①对任意都成立,②函数的图像关于轴对称,③函数的单调递减区间是这三个条件中任选一个,补充在上面问题中作答.注:如果选择多个条件分别解答,按第一个解答计分.21.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题2、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.3、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.4、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.5、D【解析】如图,根据题意可得,利用三角函数的定义和诱导公式求出,进而得出结果.【详解】如图,由题意知,,因为圆的半径,所以,所以,所以,即点.故选:D6、D【解析】利用特殊值法以及的单调性即可判断选项的正误.【详解】对于A,若则,故错误;对于B,若则,故错误;对于C,若则,故错误;对于D,由在上单调增,即,故正确.故选:D7、D【解析】因为A′B′与y′轴重合,B′C′与x′轴重合,所以AB⊥BC,AB=2A′B′,BC=B′C′.所以在直角△ABC中,AC为斜边,故AB<AD<AC,BC<AC.故选D.8、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D9、C【解析】将分别看成对应函数的交点的横坐标,在同一坐标系作出函数的图像,数形结合可得答案.【详解】在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出故选:C10、C【解析】由正弦、余弦函数的定义以及诱导公式得出.【详解】设单位圆与轴正半轴的交点为,则,所以,,故.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,12、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.13、【解析】利用三角函数的平方关系式,化简求解即可【详解】===又,所以,所以=,故填:【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力14、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.15、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.16、【解析】先利用已知条件,结合图象确定的取值范围,设,即得到是关于t的二次函数,再求二次函数的取值范围即可.【详解】先作函数图象如下:由图可知,若,,设,则,,由知,;由知,;故,,故时,最小值为,时,最大值为,故的取值范围是.故答案为:.【点睛】本题解题关键是数形结合,通过图象判断的取值范围,才能分别找到与相等函数值t的关系,构建函数求值域来突破难点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18、(1)(2),【解析】(1)若选条件①,根据函数的周期性求出,再根据三角函数的平移变换规则及函数的对称性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件②,根据平面向量数量积的坐标表示及三角恒等变换化简函数解析式,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件③,利用两角和的正弦公式及二倍角公式、辅助角公式将函数化简,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;(2)根据正弦函数的性质求出函数的单调递减区间,再根据函数的定义域令和,即可求出函数在指定区间上的单调递减区间;【小问1详解】解:若选条件①:由题意可知,,,,,又函数图象关于原点对称,所以,,,,,,,,,,若选条件②:因,,,,所以又,,,,,;若选条件③:,又,,,,,;【小问2详解】解:由,,解得,,令,得,令,得,函数在上的单调递减区间为,19、(1)(2)最大值和最小值分别为和【解析】(1)连接交轴于点,过点作于点,设,通过勾股定理计算出和,再结合也在该图象上可求解;(2)根据平移得到,再化简得,从而可求最值.【小问1详解】连接交轴于点,过点作于点.设,则有,即,所以,,因此,所以有,解得,所以,又因为其过,则,又,从而得,所以.【小问2详解】由向左平移1个单位后,得,所以.因为,则,所以当时有最小值,;当时有最大值,.20、若选择①,;若选择②,;若选择③,【解析】由可得,由所选的条件可得的对称轴,再由的最大值为4,可得关于的方程,求解即可.【详解】解:由,可得:,;若选择①,对任意都成立,故的对称轴为,即,又的最大值为4,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论