版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省本溪满族自治区高级中学2025届数学高一上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,且,若,均为正数,则的最大值是A. B.C. D.2.已知函数关于直线对称,且当时,恒成立,则满足的x的取值范围是()A. B.C. D.3.下面四个不等式中不正确的为A. B.C. D.4.已知函数f(x)=3x A. B.C. D.5.函数(为自然对数的底)的零点所在的区间为A. B.C. D.6.已知,若,则x的取值范围为()A. B.C. D.7.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.8.已知幂函数,在上单调递增.设,,,则,,的大小关系是()A. B.C. D.9.若两个非零向量,满足,则与的夹角为()A. B.C. D.10.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴二、填空题:本大题共6小题,每小题5分,共30分。11.=________12.已知,则满足条件的角的集合为_________.13.当,,满足时,有恒成立,则实数的取值范围为____________14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________15.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围16.已知是定义在正整数集上的严格减函数,它的值域是整数集的一个子集,并且,,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,.(1)求证:;(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.18.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.19.已知函数(1)求函数的最小正周期和单调递减区间;(2)将函数的图像向左平移单位长度,再将所得图像上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图像,求在上的值域20.△ABC中,A(3,-1),AB边上的中线CM所在直线方程为:6x+10y-59=0,∠B的平分线方程BT为:x-4y+10=0,求直线BC的方程.21.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用向量共线定理可得2x+3y=5,再利用基本不等式即可得出【详解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,当且仅当3y=2x时取等号故选C.点睛】本题考查了向量共线定理和基本不等式,属于中档题2、B【解析】根据题意,得到函数为偶函数,且在为单调递减函数,则在为单调递增函数,把不等式,转化为,即可求解.【详解】由题意,函数关于直线对称,所以函数为偶函数,又由当时,恒成立,可得函数在为单调递减函数,则在为单调递增函数,因为,可得,即或,解得或,即不等式的解集为,即满足的x的取值范围是.故选:B.3、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题4、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B5、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.6、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.7、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题.8、A【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键.9、C【解析】根据数量积的运算律得到,即可得解;【详解】解:因为,所以,即,即,所以,即与的夹角为;故选:C10、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.12、【解析】根据特殊角的三角函数值与正弦函数的性质计算可得;【详解】解:因为,所以或,解得或,因为,所以或,即;故答案为:13、【解析】根据基本不等式求得的最小值,由此建立不等式,求解即可.【详解】解:,,则,∴,当且仅当,即:时取等号,∴,∴,∴实数的取值范围为故答案为:.14、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为15、(1)3(2)或【解析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或16、【解析】利用严格单调减函数定义求得值,然后在由区间上整数个数,可确定的值【详解】,根据题意,,又,,所以,即,,在上只有13个整数,因此可得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)由圆柱易知平面,所以,由圆的性质易得,进而可证平面;(2)由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,此时外接球的直径即可得解.试题解析:(1)证明:∵已知是圆柱的母线,.∴平面∵是圆柱底面圆的直径,是底面圆周上异于的任意一点,∴,又,∴平面又平面(2)解:由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,,结合(1)可得三棱锥的外接球的直径即为,所以此时外接球的直径..点睛:一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.18、(1)或;(2)【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.19、(1)最小正周期为,单调递减区间为,;(2).【解析】(1)利用二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质求最小正周期和递减区间.(2)由(1)及图象平移有,应用整体法及正弦函数的性质求区间值域.【小问1详解】由题设,,所以的最小正周期为,令,,解得,,因此,函数的单调递减区间为,【小问2详解】由(1)知,,将函数的图象向左平移个单位长度,可得的图象,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到的图象,∵,则,∴,则∴在上的值域为20、.【解析】设则的中点在直线上和点在直线上,得,求得,再根据到角公式,求得,进而求得直线的方程试题解析:设则的中点在直线上,则,即…①,又点在直线上,则…②联立①②得,,有直线平分,则由到角公式得,得的直线方程为:.21、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园木工创意课程设计
- 果汁的课程设计
- 幼儿课程设计运动
- 消防课程设计灭火器配置
- 湿地管理课程设计
- 新年手势舞课程设计
- 机械课程设计研究对象
- 数字模拟课课程设计
- 2025至2030年中国贯流风叶(专用)平衡机行业投资前景及策略咨询研究报告
- 2024年起动机零部件项目可行性研究报告
- GB 16847-1997保护用电流互感器暂态特性技术要求
- 装饰装修施工质量检查评分表
- 超图软件三维平台技术参数v7c2015r
- 《思想道德与法治》 课件 第四章 明确价值要求 践行价值准则
- 幼儿园讲座:课程游戏化、生活化建设的背景与目的课件
- 湖南省高等教育自学考试 毕业生登记表
- 地理信息系统(GIS)公开课(课堂)课件
- 电气照明设备相关知识课件
- 妇产科护理学理论知识考核题库与答案
- 汉字文化精品课件
- GB∕T 36681-2018 展览场馆服务管理规范
评论
0/150
提交评论