2025届沈阳市第一三四中学高一上数学期末统考试题含解析_第1页
2025届沈阳市第一三四中学高一上数学期末统考试题含解析_第2页
2025届沈阳市第一三四中学高一上数学期末统考试题含解析_第3页
2025届沈阳市第一三四中学高一上数学期末统考试题含解析_第4页
2025届沈阳市第一三四中学高一上数学期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届沈阳市第一三四中学高一上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各组中的两个函数表示同一函数的是()A. B.y=lnx2,y=2lnxC D.2.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.3.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数4.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.45.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.6.已知,,,则a、b、c大小关系为()A. B.C. D.7.在中,,则等于A. B.C. D.8.函数f(x)=-|sin2x|在上零点的个数为()A.2 B.4C.5 D.69.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.10.若定义在上的奇函数在单调递减,且,则的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在区间上单调递增,则实数的取值范围_______.12.已知一个扇形的面积为,半径为,则它的圆心角为______弧度13.函数是幂函数,且当时,是减函数,则实数=_______14.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______15.若,,则________.16.函数的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有两个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.18.设函数(ω>0),且图象的一个对称中心到最近的对称轴的距离为(1)求在上的单调区间;(2)若,且,求sin2x0的值19.化简求值(1);(2).20.已知,求的值.21.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】逐项判断函数的定义域与对应法则是否相同,即可得出结果.【详解】对于A,

定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A;对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B;对于C,

定义域为,而定义域为,所以定义域不同,不是同一函数,排除C;对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确.故选:D2、A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键3、C【解析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C4、B【解析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图5、B【解析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B6、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C7、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力8、C【解析】在同一坐标系内画出两个函数y1=与y2=|sin2x|的图象,根据图象判断两个函数交点的个数,进而得到函数零点的个数【详解】在同一直角坐标系中分别画出函数y1=与y2=|sin2x|的图象,结合图象可知两个函数的图象在上有5个交点,故原函数有5个零点故选C【点睛】判断函数零点的个数时,可转化为判断函数和函数的图象的公共点的个数问题,解题时可画出两个函数的图象,通过观察图象可得结论,体现了数形结合在解题中的应用9、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.10、C【解析】分析函数的单调性,可得出,分、两种情况解不等式,综合可得出原不等式的解集.【详解】因为定义在上的奇函数在单调递减,则函数在上为减函数.且,当时,由可得,则;当时,由可得,则.综上所述,不等式的解集为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由对数真数大于零可知在上恒成立,利用分离变量的方法可求得,此时结合复合函数单调性的判断可知在上单调递增,由此可确定的取值范围.【详解】由题意知:在上恒成立,在上恒成立,在上单调递减,,;当时,单调递增,又此时在上单调递增,在上单调递增,满足题意;实数的取值范围为.故答案为:.12、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.13、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值14、【解析】利用求解向量间的夹角即可【详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:16、【解析】原函数化为,令,将函数转化为,利用二次函数的性质求解.【详解】由原函数可化为,因为,令,则,,又因为,所以,当时,即时,有最小值.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围【详解】(1)当时,,∴,解得,∴原不等式的解集为.(2)方程,即为,∴,∴,令,则,由题意得方程在上只有两解,令,,结合图象可得,当时,直线和函数的图象只有两个公共点,即方程只有两个解∴实数的范围.(3)∵函数在上单调递减,∴函数在定义域内单调递减,∴函数在区间上最大值为,最小值为,∴,由题意得,∴恒成立,令,∴对,恒成立,∵在上单调递增,∴∴,解得,又,∴∴实数的取值范围是.【点睛】本题考查函数的综合应用,复合函数的单调性以及指对复合型函数的最值的求法,利用换元法将指对复合型函数转化为二次函数求最值是关键,考查转化思想以及分类讨论思想的应用,属于难题18、(1)单调增区间为,单调减区间为;(2).【解析】(1)化简得到,结合条件求出,再利用余弦函数的性质即得;(2)由题可得,,再利用差角公式即求.【小问1详解】∵,因为图象的一个对称中心到最近的对称轴的距离为,又,所以,因此,∴,当时,,∴由,得,函数单调递增,由,得,函数单调递减,所以函数单调增区间为,单调减区间为.【小问2详解】∵,且,∴,又,∴,∴.19、(1)109;(2).【解析】(1)利用指数幂运算和分数指数幂与根式的转化,化简求值即可;(2)利用对数运算性质化简求值即可.【详解】解:(1)原式;(2)原式.20、【解析】首先根据正切两角和公式得到,再利用诱导公式和二倍角公式化简得到,再分子、分母同除以求解即可.【详解】因为,解得.所以.21、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论