版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省曲阳一中数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.2.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或3.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π4.若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为()A. B.C. D.5.已知等差数列,,,则数列的前项和为()A. B.C. D.6.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.7.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.28.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.64009.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.11.若数列的通项公式为,则该数列的第5项为()A. B.C. D.12.已知函数,若对任意两个不等的正实数,,都有,则实数的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,是上底面上其余的八个点,则集合中的元素个数为______14.,利用课本中推导等差数列前项和的公式的方法,可求得______15.已知随机变量,且,则______.16.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我们知道:当是圆O:上一点,则圆O的过点的切线方程为;当是圆O:外一点,过作圆O的两条切线,切点分别为,则方程表示直线AB的方程,即切点弦所在直线方程.请利用上述结论解决以下问题:已知圆C的圆心在x轴非负半轴上,半径为3,且与直线相切,点在直线上,过点作圆C的两条切线,切点分别为.(1)求圆C的方程;(2)当时,求线段AB的长;(3)当点在直线上运动时,求线段AB长度的最小值.18.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值19.(12分)为弘扬中华优秀传统文化,鼓励全民阅读经典书籍,某市举行阅读月活动,现统计某街道约10000人在该活动月每人每日平均阅读时间(分钟)的频率分布直方图如图:(1)求x的值;(2)从该街道任选1人,则估计这个人的每日平均阅读时间超过60分钟的概率.20.(12分)已知椭圆:的左、右焦点分别为,,过点的直线l交椭圆于A,两点,的中点坐标为.(1)求直线l的方程;(2)求的面积.21.(12分)某学校高一、高二、高三的三个年级学生人数如下表,按年级分层抽样的方法评选优秀学生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分层抽样的方法在高一学生中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如图所示,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过5分的概率.22.(10分)已知,,且,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C2、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.3、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题4、B【解析】首先求出两平行直线间的距离,即可求出圆的半径,设圆心坐标为,,利用圆心到直线的距离等于半径得到方程,求出的值,即可得解;【详解】解:因为直线:和:的距离,由圆C与直线:和:都相切,所以圆的半径为,又圆心在轴上,设圆心坐标为,,所以圆心到直线的距离等于半径,即,所以或(舍去),所以圆心坐标为,故圆的方程为;故选:B5、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.6、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C7、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A8、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.9、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A10、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.11、C【解析】直接根据通项公式,求;【详解】,故选:C12、B【解析】不妨设,由题意,可得,构造函数,则在上单调递增,从而有在上恒成立,分离参数转化为最值即可求解.【详解】解:由题意,不妨设,因为对任意两个不等的正实数,,都有,所以,即,构造函数,则,所以在上单调递增,所以在上恒成立,即在上恒成立,当时,因为,所以,所以,实数的最小值为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据空间平面向量的运算性质,结合空间向量垂直的性质、空间向量数量积的运算性质进行求解即可.【详解】由图像可知,,则因为棱长为1,,所以,所以,故集合中的元素个数为1故答案为:114、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律15、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.16、【解析】由三角形面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)4.【解析】(1)根据圆圆心和半径设圆的标准方程为,利用圆心到切线的距离等于圆的半径即可求出a;(2)根据题意写出AB的方程,根据垂径定理即可求出弦长;(3)根据题意求出AB经过的定点Q,当CQ垂直于AB时,AB最短.【小问1详解】由题,设圆C的标准方程为,则,解得.故圆C方程为;【小问2详解】根据题意可知,直线的方程为,即,圆心C到直线的距离为,故弦长;【小问3详解】设,则,又直线方程为:,故直线过定点Q,设圆心C到直线距离为,则,故当最大时,最短,而,故与垂直时最大,此时,,∴线段长度的最小值4.18、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为19、(1)(2)0.7【解析】(1)利用概率和为1计算可得的值;(2)求频率分布直方图中每人每日平均阅读时间超过60分钟的概率即为这个人阅读时间超过60分钟的概率.【小问1详解】由得【小问2详解】,估计这个人的每日平均阅读时间超过60分钟的概率为20、(1)(2)【解析】(1)设,根据AB的中点坐标可得,再利用点差法求得直线的斜率,即可求出直线方程;(2)易得直线过左焦点,联立直线和椭圆方程,消,利用韦达定理求得,再根据即可得出答案.【小问1详解】解:设,因为的中点坐标为,所以,则,两式相减得,即,即,所以直线l的斜率为1,所以直线l的方程为,即;【小问2详解】在直线中,当时,,由椭圆:,得,则直线过点,联立,消整理得,则,.21、(1)400(2)(3)【解析】(1)根据分层抽样的方法,列出关系式计算即可;(2)根据分层抽样的方法,求出抽取的女生人数,进而列举出从样本中抽取2人的所有情况,可根据古典概型的概率公式计算即可;(3)求出样本平均数,进而求出与样本平均数之差的绝对值不超过5的数,从而利于古典概型的概率公式计算即可.【小问1详解】设该校总人数为n人,由题意得,所以,.【小问2详解】设所抽样本中有m个女生,因为用分层抽样的方法在高一学生中抽取一个容量为5的样本,所以,解得.所以抽取了2名女生,3名男生,分别记作,;,,,则从中任取2人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学营养餐供应承包协议样本一
- 2024年安全施工质量保证协议
- 2024售后技术服务合同范本
- 2024年国际基础设施工程协议模板版B版
- 2024工程转包合同范本
- 湖南省邵阳市2023-2024学年高二生物上学期期中试题含解析
- 2024年城市智能交通系统建设项目合同
- 2024员工自愿退养经济补偿合同版B版
- 2024年人力资源服务企业专属劳动协议样本版
- 2024年外贸代理业务抽成协议模板一
- 安全生产管理制度修订记录表
- 超星尔雅学习通【像经济学家那样思考信息激励与政策(复旦大学)】章节测试附答案
- 河道治理工程施工组织设计
- 微生物菌剂生产技术规程
- 安德里兹FPS系列冲浆泵使用说明书
- 铁路建设征地拆迁补偿标准(附表)
- 水中氯离子的测定(莫尔法)(共4页)
- 葡甘露聚糖项目市场分析(范文)
- 第5章 沙质海岸的泥沙运动(2版)
- 五年级上册语文23鸟的天堂第二课时(人教部编版)【教案】
- 山东省企业从业人员全员培训合格证样式(试行)
评论
0/150
提交评论