版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市丰台区第12中学高二数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A. B.C. D.52.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.3.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁4.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.5.过点且垂直于的直线方程为()A. B.C. D.6.过点且斜率为的直线方程为()A. B.C D.7.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数8.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.409.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△的顶点,,且,则△的欧拉线的方程为()A. B.C. D.11.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.12.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,若,则=____________.14.若经过点且斜率为1的直线与抛物线交于,两点,则______.15.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16.直线l交椭圆于A,B两点,线段AB的中点为,直线是线段AB的垂直平分线,若,D为垂足,则D点的轨迹方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C的方程18.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.19.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.20.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.21.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.22.(10分)如图,在正四棱柱中,,,点在棱上,且平面(1)求的值;(2)若,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,..故选:D2、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B3、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题4、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C5、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B6、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.7、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题8、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题9、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.10、D【解析】由题设条件求出垂直平分线的方程,且△的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得,且中点为,∴垂直平分线的斜率,故垂直平分线方程为,∵,则△的外心、重心、垂心都在垂直平分线上,∴△的欧拉线的方程为.故选:D11、A【解析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A12、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用裂项相消法求和即可.【详解】解:因为,所以.故答案为:.14、【解析】由题意写出直线的方程与抛物线方程联立,得出韦达定理,由弦长公式可得答案.【详解】设,则直线的方程为由,得所以所以故答案为:15、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.16、【解析】设直线l的方程为,代入椭圆方程并化简,然后根据M为线段AB的中点结合根与系数的关系得到k,t间的关系,进而写出线段AB的垂直平分线的直线方程,可以判断它过定点E,再考虑直线l的斜率不存在的情况,根据题意可知,点D在以OE为直径的圆上,最后求出点D的轨迹方程.【详解】设直线l的方程为,代入椭圆方程并化简得:,设,则,解得.因为直线是线段AB的垂直平分线,故直线:,即:令,此时,,于是直线过定点当直线l的斜率不存在时,,直线也过定点点D在以OE为直径的圆上,则圆心为,半径,所以点D轨迹方程为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1718、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.19、(1);(2)或.【解析】(1)由题设可得圆心为,半径,根据直线与圆的相切关系,结合点线距离公式列方程求参数a的值即可.(2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a,即可得直线方程.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线距离,即,可得:.【小问2详解】由(1)知:圆心到直线的距离,因为,即,解得:,所以,整理得:,解得:或,则直线为或.20、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.21、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH,CH,则由(1)知:,结合点为MC的中点,所以PA=PB,故由三线合一得:PH⊥AB,且CH⊥AB,所以∠CHP即为二面角的平面角,因为,,,所以,,,由勾股定理得:,,,在△PCH中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年销售公司老板工作计划
- 有关小学生暑假计划模板集锦
- 2024年生产计划管理 生产计划管理系统
- 幼儿园教研工作计划怎么写
- 高一上学期历史教学计划范文
- 岭南师范学院《童装项目设计》2021-2022学年第一学期期末试卷
- 公司管理人员个人工作计划
- 2024-2024学年第二学期二年级语文教学计划
- 信息技术备课组工作计划
- 人力资源年度计划如何制定
- 高中地理命题培训课件
- 【数学】天津市河北区2024届高三上学期期末质量检测试题(解析版)
- 2024年山东鲁信实业集团有限公司招聘笔试参考题库含答案解析
- 医院保密培训课件
- 干部履历表(中共中央组织部2015年制)
- 畜禽粪污资源化利用项目商业计划书
- Part1-2 Unit2 Health and Fitness教案-【中职专用】高一英语精研课堂(高教版2021·基础模块2)
- 信创安全运维方案设计思路
- 创意嘉年华独特创意的嘉年华活动策划方案
- 极限配合与测量技术期末考试试卷题库及答案
- 标识牌单元工程施工质量验收评定表
评论
0/150
提交评论