版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市、黄冈市2025届高二上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.2.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.23.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.4.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺6.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或7.设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A. B.C. D.8.已知函数,,当时,不等式恒成立,则实数的取值范围为()A. B.C. D.9.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则10.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则11.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.12.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若a,b,c都为正数,,且,,成等比数列,则的最大值为____________.14.若不同的平面的一个法向量分别为,,则与的位置关系为___________.15.无穷数列满足:只要必有,则称为“和谐递进数列”,已知为“和谐递进数列”,且前四项成等比数列,,,则__________,若数列前项和为,则__________.16.若等比数列满足,则的前n项和____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程18.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;19.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?20.(12分)如图,正方形与梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,为的中点(1)求证:平面平面;(2)求二面角的正切值21.(12分)等比数列中,,(1)求的通项公式;(2)记为的前n项和.若,求m的值22.(10分)已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D2、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C3、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A4、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B5、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B6、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.7、C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C8、C【解析】由题意得出,构造函数,可知函数在区间上单调递增,可得出对任意的恒成立,利用参变量分离法可得出,利用导数求得函数在区间上的最大值,由此可求得实数的取值范围.【详解】函数的定义域为,当时,恒成立,即,构造函数,则,所以,函数在区间上为增函数,则对任意的恒成立,,令,其中,则.,所以函数在上单调递减;又,所以.因此,实数的取值范围是.故选:C.9、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.10、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.11、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.12、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由等比数列性质知,即可得,再利用基本不等式求解即可.【详解】由,,成等比数列,得,即又,则,所以,即,即所以,当且仅当时,等号成立,故的最大值为故答案为:14、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行15、①.2②.7578【解析】根据前四项成等比数列及定义可求得,根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,,又,为“和谐递进数列”,,,,,…,数列是周期数列,周期为4,故答案为:2,757816、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或18、(1),(2)【解析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小问2详解】,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:.19、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料费最省;当时,船的实际前进速度应为(x-8)km/h,全程燃料费最省20、(1)见解析;(2).【解析】(1)证明BC⊥平面BDE即可;(2)以D为原点,DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小问1详解】∵ADEF为正方形∴ED⊥AD又∵正方形ADEF与梯形ABCD所在的平面互相垂直,且ED⊂平面ADEF∴ED⊥平面ABCD∵BC⊂平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,则,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE与BD平面BDE,∴BC⊥平面BDE又∵BC⊂平面BEC∴平面BDE⊥平面BEC;【小问2详解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三线两两垂直,故以D为原点,DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系D-xyz:则,则设为平面BDM的法向量,则,取,取平面BCD的法向量为,设二面角的大小为θ,则,∴.21、(1)或;(2)5.【解析】(1)设的公比为q,解方程即得解;(2)分两种情况解方程即得解.【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年销售公司老板工作计划
- 有关小学生暑假计划模板集锦
- 2024年生产计划管理 生产计划管理系统
- 幼儿园教研工作计划怎么写
- 高一上学期历史教学计划范文
- 岭南师范学院《童装项目设计》2021-2022学年第一学期期末试卷
- 公司管理人员个人工作计划
- 2024-2024学年第二学期二年级语文教学计划
- 信息技术备课组工作计划
- 人力资源年度计划如何制定
- 高中地理命题培训课件
- 【数学】天津市河北区2024届高三上学期期末质量检测试题(解析版)
- 2024年山东鲁信实业集团有限公司招聘笔试参考题库含答案解析
- 医院保密培训课件
- 干部履历表(中共中央组织部2015年制)
- 畜禽粪污资源化利用项目商业计划书
- Part1-2 Unit2 Health and Fitness教案-【中职专用】高一英语精研课堂(高教版2021·基础模块2)
- 信创安全运维方案设计思路
- 创意嘉年华独特创意的嘉年华活动策划方案
- 极限配合与测量技术期末考试试卷题库及答案
- 标识牌单元工程施工质量验收评定表
评论
0/150
提交评论