四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题含解析_第1页
四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题含解析_第2页
四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题含解析_第3页
四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题含解析_第4页
四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市龙泉第二中学2025届高二数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点作互相垂直的弦,则的最小值为()A.16 B.18C.32 D.642.已知三维数组,,且,则实数()A.-2 B.-9C. D.23.已知函数,那么的值为()A. B.C. D.4.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.5.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.6.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.7.等差数列中,,则()A. B.C. D.8.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.9.已知数列中,,则()A.2 B.C. D.10.等差数列中,,,则()A.6 B.7C.8 D.911.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.12.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为和的等差中项,则_____________.14.已知椭圆的左、右焦点分别为,,为椭圆上一点,垂直于轴,且为等腰三角形,则椭圆的离心率为__________15.若圆平分圆的周长,则直线被圆所截得的弦长为____________16.如图,棱长为2的正方体中,E,F分别为棱、的中点,G为面对角线上一个动点,则三棱锥的外接球表面积的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.18.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围19.(12分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.20.(12分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程21.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?22.(10分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线方程求出焦点坐标,分别设出,所在直线方程,与抛物线方程联立,利用根与系数的关系及弦长公式求得,,然后利用基本不等式求最值.【详解】抛物线的焦点,设直线的直线方程为,则直线的方程为.,,,.由,得,,同理可得..当且仅当,即时取等号.所以的最小值为.故选:B2、D【解析】由空间向量的数量积运算即可求解【详解】∵,,,,,,且,∴,解得故选:D3、D【解析】直接求导,代入计算即可.【详解】,故.故选:D.4、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A5、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.6、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B7、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.8、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.9、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.10、C【解析】由等差数列的基本量法先求得公差,然后可得【详解】设数列的公差为,则,,所以故选:C11、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C12、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.14、.【解析】通过垂直于轴,可以求出,由已知为等腰三角形,可以得到,结合关系,可以得到一个关于离心率的一元二次方程,解方程求出离心率.【详解】∵垂直于,∴可得,又∵为等腰三角形,∴,即,整理得,解得.【点睛】本题考查了求椭圆离心率问题,关键是通过已知条件构造出关于离心率的方程.15、6【解析】根据两圆的公共弦过圆的圆心即可获解【详解】两圆相减得公共弦所在的直线方程为由题知两圆的公共弦过圆的圆心,所以即,又,所以到直线的距离所以直线被圆所截得的弦长为故答案为:616、【解析】以DA,DC,分别为x轴,y轴,z轴建系,则,设,球心,得到外接球半径关于的函数关系,求出的最小值,即可得到答案;【详解】解:以DA,DC,分别为x轴,y轴,z轴建系.则,设,球心,,又.联立以上两式,得,所以时,,为最小值,外接球表面积最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【点睛】本题主要考查根据导数求函数单调性和极值,解题关键是掌握导数求单调性的方法和极值定义,考查分析能力和计算能力,属于中档题.18、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是19、(1);(2)最大值为-1,最值为-5.【解析】(1)根据给定条件结合函数的导数建立方程,求解方程并验证作答.(2)利用导数探讨函数在上的单调性即可计算作答.【小问1详解】依题意:,则,解得:,当时,,当时,,当时,,则函数在处有极值,所以.【小问2详解】由(1)知:,,,当时,,当时,,因此,在上单调递增,在上单调递减,于是得,而,,则,所以函数在上的最大值为-1,最值为-5.20、(1)(2)或【解析】(1)设出,表达出,直接法求出轨迹方程;(2)在第一问的基础上,先考虑直线斜率不存在时是否符合要求,再考虑斜率存在时,设出直线方程,表达出圆心到直线的距离,利用垂径定理列出方程,求出直线方程.【小问1详解】设,则,,故,两边平方得:【小问2详解】当直线斜率不存在时,直线为,此时弦长为,满足题意;当直线斜率存在时,设直线,则圆心到直线距离为,由垂径定理得:,解得:,此时直线的方程为,综上:直线的方程为或.21、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论