版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省2025届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+2.已知向量,,那么()A.5 B.C.8 D.3.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.4.已知幂函数在上单调递减,则()A. B.5C. D.15.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,6.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.7.函数的零点所在的区间为A. B.C. D.8.在内,不等式解集是()A. B.C. D.9.函数的部分图象大致是图中的()A.. B.C. D.10.下列函数中定义域为,且在上单调递增的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点关于直线的对称点的坐标为______.12.写出一个周期为且值域为的函数解析式:_________13.若a∈{1,a2﹣2a+2},则实数a的值为___________.14.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____15.不等式的解集为_________________.16.若正实数满足,则的最大值是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求值;已知,求的值18.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值19.已知A(﹣1,0),B(1,0),动点G满足GA⊥GB,记动点G的轨迹为曲线C(1)求曲线C的方程;(2)如图,点M是C上任意一点,过点(3,0)且与x轴垂直的直线为l,直线AM与l相交于点E,直线BM与l相交于点F,求证:以EF为直径的圆与x轴交于定点T,并求出点T的坐标20.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大21.已知函数(1)若是偶函数,求a的值;(2)若对任意,不等式恒成立,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.2、B【解析】根据平面向量模的坐标运算公式,即可求出结果.【详解】因为向量,,所以.故选:B.3、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.4、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.5、A【解析】由得,得,则,故选A.6、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用7、B【解析】函数的零点所在区间需满足的条件是函数在区间端点的函数值符号相反,函数是连续函数【详解】解:函数是连续增函数,,,即,函数的零点所在区间是,故选:【点睛】本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号,属于基础题8、C【解析】根据正弦函数的图象和性质,即可得到结论【详解】解:在[0,2π]内,若sinx,则x,即不等式的解集为(,),故选:C【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题9、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题10、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.12、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:13、2【解析】利用集合的互异性,分类讨论即可求解【详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【点睛】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题14、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.15、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.16、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【详解】解:已知,所以:,所以:,,,由于,所以:【点睛】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值18、(1)(2)(3)【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结合正弦型函数图象,解三角不等式即可求出结果;(3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果.【小问1详解】因为的最大值为1,所以的最大值为,依题意,,解得【小问2详解】由(1)知,由,得所以解得所以,使成立的x取值集合为【小问3详解】依题意,,因为是的一个零点,所以,所以所以,因为,所以,所以t的最大值为19、(1)x2+y2=1;(2)证明见解析,T(3+2,0)或T(3﹣2,0)【解析】(1)由可得,列出等式即可求动点的轨迹方程;(2)设出点M的坐标,我们可以得到直线AM、直线BM的方程,与直线方程联立求得点E、点F的坐标,进而得到以为直径的圆的方程,最后求出定点坐标.【详解】(1)设G(x,y)(x≠±1),因为GA⊥GB,所以,整理得C的方程为x2+y2=1(x≠±1);(2)设点M(x0,y0)(x0≠±1),且有x02+y02=1,则直线AM的方程为y,令x=3,得E(3,),直线BM的方程为y,令x=3,得F(3,),从而以EF为直径的圆方程为(x﹣3)2+(y)(y)=0,令y=0,则(x﹣3)2•0,即(x﹣3)20,又因为x02+y02=1,所以,代入可得x2﹣6x+1=0,解得x=3±2,所以定点T(3+2,0)或T(3﹣2,0)【点睛】本题考查动点的轨迹方程,考查直线与圆的方程的应用问题,属于中档题,涉及到的知识点有直线的点斜式方程,由圆上两点的坐标列出圆的方程,认真分析题意求得结果.20、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025车辆抵押借款合同书模板
- 单位人员管理制度呈现合集
- 2025水库养殖承包合同
- 矿山物流运输服务合同
- 2025女职工专项集体合同
- 航空物流CEO聘任协议样本
- 2024年度农药产品电商推广与销售合同3篇
- 企业员工宿舍卫生就餐管理规定
- 医药采购合同风险管理指南
- 环保技术信息系统问题管理规范
- 研发部年终总结和规划
- 山东省烟台市2024届高三上学期期末考试英语试题 含解析
- 《汽车专业英语》期末试卷附答案第1套
- 医学细胞生物学(温州医科大学)知到智慧树章节答案
- 《如何培养良好心态》课件
- 龙门吊拆装合同中的质量保修条款(2024版)
- 《中医养生肾》课件
- 2024至2030年中国肉食鹅数据监测研究报告
- 中国高血压防治指南(2024年修订版)核心要点解读
- 花道-插花技艺养成学习通超星期末考试答案章节答案2024年
- 工程质量安全手册-住建部编
评论
0/150
提交评论